
RITIS Development Framework 
Dan Bucatanschi 

Department of Computer Science 
University of Maryland, College Park 

Email: dangb@umd.edu 

Abstract: Several goals of Intelligent Transportation 
Systems are to improve productivity, ease traffic 
congestion and minimize road risks through the use of 
advanced communications technologies. The RITIS 
software system developed at University of Maryland 
inside the Center for Advanced Transportation Technology 
Laboratory aims to improve communication among 
transportation agencies through data integration and 
sharing. We present the RITIS Development Framework, a 
software framework that aims to improve the design and 
maintainability of agency-to-RITIS data loaders and 
translators, while also minimizing the training and learning 
required to develop loaders for future data sources. 

1 Introduction 
1.1 What is ITS? 

According to the Research and Innovative Technology Administration (RITA), 
Intelligent Transportation Systems (ITS) “improve transportation safety and mobility and 
enhance American productivity through the integration of advanced communications 
technologies into the transportation infrastructure and in vehicles. Intelligent 
Transportation Systems (ITS) encompass a broad range of wireless and wire line 
communications-based information and electronics technologies” [12]. 
In other words, Intelligent Transportation Systems try to alleviate some of the major 
transportation and traffic problems of the 21st century by using advanced communications 
technology, electronic equipment and computers. Numerous governmental and private 
agencies, researchers, companies and even individual citizens are involved in using and 
creating the necessary technology that helps contribute to solving the increasing traffic 
problem. 

1.2 The goal of the Center for Advanced Transportation Technology 
Laboratory (CATT Lab) 

The Center for Advanced Transportation Technology Laboratory (CATT Lab) is 
part of the Civil Engineering Department at the University of Maryland, and is one of the 
many participating agencies in ITS research [2]. The laboratory was created with the goal 
of researching innovative ways in gathering transportation data from around the DC 
metropolitan area (Northern Virginia, District of Columbia and Maryland) and presenting 



it in a useful manner to participating transportation agencies, university researchers and 
the general public. 

Since its inception in 2001, the CATT Lab produced several research projects, the staple 
of which is the Regional Integrated Transportation Information System (RITIS). RITIS 
gathers and integrates various types of traffic information from various transportation 
agencies by presenting a multitude of interactive tools, which allow users to keep up to 
date with the state of the whole DC metropolitan area or explore historical information 
[3]. RITIS is composed of several software components. However, in this paper we shall 
focus on the way RITIS gathers and integrates data, and our contribution, the RITIS 
Development Framework, which helps developers in writing new components for 
integration with future data sources. 

1.3 Outline 
We start off by presenting related work to our field in Section 2 and follow with 

the RITIS overview in Section 3. We then move on to describing our problem (Section 4) 
and proposed solution (Section 5). Finally, we provide an evaluation of the solution in 
Section 6, possible future directions where the project can go next (Section 7), and our 
conclusions in Section 8. In Appendix A we provide a UML diagram depicting the RITIS 
Development Framework. 

2 Related Work 
The field of Intelligent Transportation Systems (ITS) is flourishing with many 

research projects as can be seen on the RITA website [12]. Ning and Li describe a 
“Comprehensive Information System” for railway networks. They address the issue of a 
common data format, but do not go into details about how data already gathered by 
legacy systems can be integrated into their new tools [9]. Kelly, et al. propose and 
implement a project for security management of vehicle fleets. Their approach is using an 
Object-Oriented Framework with various components programmed off of it [6]. 
Zavattero and Wu created a “Traveler Information System” that integrates data from 
across various agencies and presents it to the public and interested entities. Their work 
presents a monolithic system that uses CORBA for inter-agency communication [18]. 
Finally, Scherer presents “an overview of their vision” of the Northern Virginia (NOVA) 
system, which integrates data from various agencies and “fuses” it in a web-based format, 
but without providing an implementation and an evaluation [13]. 
The problem of integrating data from various legacy systems has been studied by [7], [8], 
[13], [17] and [18]. Lussier and Wu [8], and Kiel [7] dealt with the problem of integrating 
legacy geo-spatial data into ArcView, while Scherer [13], Yang, et al. [17], and Zavattero 
and Wu [18] discussed integration of traffic information data across various systems. 
On the software engineering side, Heistracher, et al. present a common framework for 
ITS message passing based on the publisher-subscriber model using intermediate brokers 
and filters [5]. Choi, Choi and Yeom discuss guidelines for distributed software 
development using components, especially addressing issues such as distribution, 
performance, fault tolerance, security and distributed transactions. They use CORBA in 
their work, but also mention Enterprise Java Beans (EJB) [4]. Regarding integration of 



various software frameworks for message passing and remote method invocation, 
Bocquet and Gransart present a unified system for both synchronous (CORBA, RMI, 
RPC) and asynchronous (JMS, JavaSpaces) messages. However, they assume a totally 
homogenous system, since they do not deal with the issue of message translation [1]. 

3 RITIS Overview 
The Regional Integrated Transportation Information System (RITIS) is a software 

system developed by CATT Lab that gathers and integrates various types of traffic 
information from various data sources by presenting a multitude of interactive tools, 
which allow users to keep up to date with the state of the system or explore historical 
information [3]. 

 
Figure 1: RITIS Logical Overview: The role of RITIS is to both integrate and present data from various 
agencies 

Figure 1 represents the logical design of RITIS. Various public and private agencies send 
data streams to RITIS and in return they receive updates with the globally integrated 
information back from the system. RITIS acts as both a tool for instant, real-time updates 
regarding unexpected incidents, planned events and traffic information, as well as an 
archival database with powerful interfaces tweaked specifically for visualizing various 
trends and anomalies. 



 
Figure 2: RITIS Event View 

 

 
Figure 3: RITIS Map View 



Figure 2 shows an example of the Event View in RITIS. Events and Incidents are listed 
in a tabular fashion and the most relevant information is presented. The user can view 
more details about any event by clicking on the “Display” link in the “Timeline” column. 
Figure 3 depicts the Map View. This view overlays several layers of information on top 
of a map: traffic speed/volume information, incidents and planned events, weather 
conditions, etc. The map elements are interactive and they open more details when 
clicked. In the figure one can see windows open about an accident on I-66 East and a 
Navteq Traffic Detector’s data. 

3.1 System Components 
Figure 4 depicts the various System Components that make up RITIS. Data is 

received in various forms from the agencies providing RITIS with real-time information. 
For each custom data feed, a loader interprets the data, converts it into a common, ITS 
standards compliant format (CATT XML) and finally it loads the data into a shared 
database. Then CATT XML updates are sent to agencies that request them. In the 
meantime, the visualization tools query the database to present either real-time or 
historical views of the collected data. 

 
Figure 4: RITIS System Components Overview 

3.2 Data Feeds 
The data feeds that RITIS receives from the agencies are very heterogeneous. For 

example, traffic information from road traffic sensors can contain several hundreds of 
data elements per second, each element being composed of two data values: speed and 
volume. On the other hand, road incident updates come on the order of minutes, but 
contain various pieces of information, such as the number of cars involved in an incident, 
the type of cars, the number of responders at the scene, the time of responder arrival and 
departure, contact information of notified people, road conditions, lane configuration at 
the scene of the incident, lane closure information, various responder chat logs, and many 
more. 
Moreover, the heterogeneity of data feeds extends across different agencies for the same 
type of data. For example, in the case of incident data, one agency might provide only the 



number of cars involved, while another might actually give a description of each car, 
including car make and model, color, license plate numbers, type of vehicle, number of 
persons in each vehicle, etc. 
Because most of sensor data is relatively simple and repetitive, various easy to parse 
formats are being used by the different agencies providing data feeds to RITIS. However, 
these formats do not usually have automatic parsers already built for them. One has to 
write a data feed parser from scratch for every new sensor data format, but because of the 
format’s simplicity, it is usually not difficult to do so. 

On the other hand, incident and planned event data feeds, contain various pieces of 
information and not all types of information are usually available at any given point in 
time. Indeed, some of the types of information that can be recorded may not be available 
at all during the whole lifetime of an incident. For example, when an incident is reported, 
an operator working for an agency responsible with the incident gets notified. The 
operator might create a new incident in the agency’s system, and the new incident might 
contain just the number of vehicles involved and the location of the incident. Lane 
configuration might not be known at this time, and certainly lane closure information will 
not be known until a responder arrives on scene. Later, during the progress of the 
incident, updates regarding these pieces of information may become available. Some 
types of information may never reach into the final incident data feed. For example, if a 
Medevac helicopter was never needed at the scene of the incident, then the information 
about the Medevac will never appear in the respective incident. 
Because of the various possible types of information that an agency might keep track 
regarding incidents and planned events, most agencies opt for an XML representation of 
the incident and planned event data feeds. Nowadays, most governmental agencies also 
provide RITIS with an XML schema containing a description of the possible values in the 
data feed. These XML schemas vary wildly both in terms of content and amount of detail 
from agency system to agency system. 
Thus, in order to accommodate the various forms of data, RITIS employs a PostgreSQL 
database that contains a common RITIS database schema, as well as agency/system 
specific extended schemas. The common RITIS database schema captures information 
that is common to all systems. All the common information from incidents and planned 
events is stored in the common database schema and is thus consistent from system to 
system. The system specific extended schemas are designed in such a way that they 
inherit every relation from the RITIS schema and add new relations and/or extend the 
inherited relations with agency specific columns. The system is easily extensible with 
new agencies and schemas. 

3.3 Incident Loader 
A loader is a piece of software that receives information from an agency and loads 

it into the RITIS database in the proper schemas. A generic loader has several tasks to 
perform depending on the kind of data it is supposed to load in the database. Because 
traffic information loaders receive simple types of very repetitive data, they do not make 
the focus of this paper. From now on, whenever we talk about a loader we refer to 
incident and planned event loaders that deal exclusively with XML data. Thus, the main 
tasks of a loader, in the order in which they should be executed, are: 



1. Connect to the XML data feed from a given agency system. Download or receive 
latest data, 

2. Convert agency specific schema compliant XML to RITIS specific schema 
compliant XML (called CATT XML), 

3. Load the data into the agency specific database schema, 
4. Send converted CATT XML message update back to listening agencies. 

As we shall see in the following Section, Task 2 is the most time consuming task for a 
software developer who is already familiar with the RITIS loader development. However, 
Tasks 1, 3 and 4 take an equal, if not longer amount of time than Task 2 for a software 
developer who is not familiar with the technologies involved and who has never designed 
a RITIS loader in the past. Since most of the developers at CATT Lab are newly hired 
undergraduate or graduate students, more often than not, they fall into the latter category 
of developer and thus there is much time being spent on getting accustomed with the 
technologies and the design required for programming such a piece of software, instead 
of solving the intricate problem of translation from one system schema to the RITIS 
common schema, i.e. solving Task 2. 

4 Problem 
As we have seen in Section 3.3, there are four tasks that need to be accomplished 

by a RITIS loader. The loader is composed of several components to help it finish the 
tasks. 

4.1 Typical Components of a classic RITIS Loader 
Figure 5 depicts the typical components of a classic RITIS Loader. 

 
Figure 5: Components of a Classic RITIS Loader 

Each component contributes to one of the tasks. For example, the Message Listener is 
responsible for Task 1, connecting to and receiving or downloading the data from an 
agency. The Agency Convertor is responsible with the first part of Task 2, converting the 
data from the agency XML schema to an internal object-oriented format understandable 
by the loader. The Manual Translator, responsible with the second part of Task 2, 
transforms the agency data into the required RITIS format. At this point in time the data 
is still in an object-oriented format inside the loader’s memory. The DB Inserter takes the 
RITIS formatted data and inserts it into the RITIS database, thus contributing to Task 3. 
The CATT XML Message Convertor converts the object-oriented representation of the 
RITIS data into the CATT XML format, and, finally, the Message Sender is responsible 

Loader 

Message 
Listener 

Agency 
Convertor 

Manual 
Translator DB Inserter 

CATT XML 
Message 

Convertor 

Message 
Sender 



with executing Task 4, sending the CATT XML as a message update to listening 
agencies. Out of all these components, the highlighted component, the Manual 
Translator, is the only component that is fundamentally different from agency to agency. 
The rest of the components are relatively similar. 

This is a functional overview of a loader. However, we point out that we have presented 
this particular division of functional components after we have done the research to 
identify these components in the first place. Before the RITIS Development Framework 
was created, a software developer would mostly program the loader as one monolithic 
application, with little thought for such functional components. 

4.2 Traditional RITIS Loader Development Process 
Since most of the classic RITIS Loader applications were developed from scratch, 

with little chance of identifying any common functional components among the early 
loaders, the software developers were forced to re-invent functionalities that already 
existed in previous loaders. It was very difficult for any developer to go back to a 
finished and deployed loader and identify possible pieces of code or components that 
could have been reused in their own application. 
Thus, we identified several problems with the traditional development process (Figure 6): 

• Wasted development time and effort: Developing each loader would require an 
investment of time and effort in reinventing several very similar functional 
components. 

• Extra maintainability effort: Having several monolithic and independent projects 
to maintain makes it difficult to identify and fix potential and real problems in an 
environment that demands 24/7 availability (the RITIS website aims to provide its 
services non-stop around the clock). 

• Extra learning/training time: Because the CATT Lab’s software is mostly 
developed by students who work part time and because the workforce changes 
very often, the developers need time to learn the technologies and APIs involved 
in developing a loader, or to understand the used technologies in an older loader 
that they have to maintain. Having no consistency among loaders increases 
training time as there are likely few people familiar with old loader technologies, 
and also learning time, since when one is done working on a loader, one has to 
learn new parts of a different loader that they have to work on. 



 
Figure 6: Traditional Development Process. Every loader is developed independently of one another. 

5 Solution 
The RITIS Development Framework was conceived to alleviate the problems 

identified in Section 4.2. 

5.1 Revised Development Process 
Figure 7 contains the overview of the RITIS Development Framework. As can be 

seen from the figure, the Framework provides predefined components for most of the 
parts that make up a loader. With little amounts of coding and configuration, a developer 
can create customized versions of the Message Listener, Agency Convertor, DB Inserter, 
CATT XML Message Convertor and Message Sender, and afterwards the developer can 
concentrate their efforts on the translator. 

Moreover, even the translator has an abstract template defined for it in the Framework, 
the Manual Translator Template. The Translator Template provides Java classes and 
interfaces as a guideline for the developer to brake down the translation process into 
several components. Please refer to Appendix A for a Java based UML diagram that 
describes in detail the various classes that make up the Framework. 

 
Figure 7: Revised Development Process. Developers concentrate their efforts on the Manual Translator 
component; the other components are reused from the framework. 

This design tries to address the problems mentioned earlier in the following ways: 

Traditional Development 

Loader 1 

Message 
Listener 

Agency 
Converto

r 

Manual 
Translato

r 

DB 
Inserter 

CATT 
XML 

Message 
Converto

r 

Message 
Sender 

Loader 2 

Message 
Listener 

Agency 
Converto

r 

Manual 
Translato

r 

DB 
Inserter 

CATT 
XML 

Message 
Converto

r 

Message 
Sender 

Loader 3 

Message 
Listener 

Agency 
Converto

r 

Manual 
Translato

r 

DB 
Inserter 

CATT 
XML 

Message 
Converto

r 

Message 
Sender 

RITIS Development Framework 

Message 
Listener 

Agency 
Convertor Manual Translator Template 

Loader 1 
Translator 

Loader 2 
Translator 

Loader 3 
Translator 

DB Inserter 
CATT XML 

Message 
Convertor 

Message 
Sender 



• Development time and effort: By providing a framework and reusable and 
configurable code and classes, the developers do not have to spend time on 
architecting their loader and major components, and thus have more time to 
develop, test and deploy the translator part component. 

• Maintainability: Every loader follows the same design principles and components, 
thus the framework makes it easy for anyone familiar with it to look into any 
loader and fix problems or upgrade functionality. 

• Learning/training time: The time spent on understanding the framework can be 
made up for by offloading the developer’s attention from all the technologies used 
behind the scenes by every classic loader. Moreover, once a developer is used to 
the framework, the knowledge gained can be used in any loader within RITIS. 

5.2 About the Implementation 
The RITIS Development Framework, as well as all RITIS loaders, is programmed 

in Java 1.6. Some of the consistency improvements that we were able to achieve were 
also a result of the underlying technologies the framework uses, as well as the particular 
way the framework and the loaders using it are deployed at runtime. 
At the base of the configuration of every RITIS loader stands an Inversion of Control 
framework, called Spring Framework [14]. This framework allows all developers to use a 
common and consistent, XML based method to write the configuration and instantiation 
of classes that make up a loader. This mechanism makes it very easy to reuse the 
Framework’s components and classes with minimal programming effort from the 
developer. We shall now address the details of implementation of the various 
components. 

The Message Listener and the Message Sender components are using the Java Message 
System (JMS) to respectively receive and send messages containing XML from and to 
the agencies [15]. To support this communication one or more ActiveMQ message 
brokers is used as an intermediary between the loader and the agencies [16]. The 
framework contains all the classes required to communicate with ActiveMQ brokers and 
a developer would just have to instantiate and configure these classes in the XML 
configuration using the Spring Framework. 
Both the Agency Convertor and the CATT XML Message Convertor components make 
use of the Java Architecture for XML Binding (JAXB). JAXB is a DOM-based 
technology used for converting data back and forth between W3C compliant XML and a 
Java object model inside the loader’s memory, thus making it painless for a Java 
developer to work with XML data just by using familiar Java objects instead of parsing 
the XML manually inside the program [10]. 
The DB Inserter component makes use of the Hibernate framework [11]. Hibernate 
allows programs to connect to and work with data in relational databases by using an 
object-oriented abstraction for tables, rows and columns. It makes use of so-called 
Hibernate mapping files, which describe mappings between various Java classes and the 
corresponding tables in a database. Moreover, the mapping is fully portable from one 
supported DBMS vendor to any other, with minimal or no changes. 



All the Java classes of the RITIS Development Framework are packaged in a JAR file, 
which is distributed to every loader developer and is also included in the runtime 
environment of the RITIS loader. Every loader also has its own development 
environment set up, where the source files and the configuration files reside. This 
structured environment allows for consistency among the locations and internal 
organization of source files and configuration files across all loaders. 

6 Evaluation 
We worked on the RITIS Development Framework starting in the summer of 

2008 and ending towards December of the same year. In parallel, various software 
developers at CATT Lab started using the Framework (or parts of it) for the development 
of their RITIS loaders in August 2008, and continued using it until the time of this 
writing. 
During this period, the CATT Lab’s Senior Developer, Jason Ellison, pointed out various 
positive aspects about the Framework: 

• A guideline for RITIS loader development: The RITIS Development Framework 
is at the very least a guideline to follow in terms of RITIS loader design. It 
provides development consistency among various loaders, allowing different 
developers to work on different loaders more easily than was possible before the 
Framework existed. 

• Time spent on design is cut down to a minimum: Developers do not have to 
architecture their loaders from scratch. The major components are already laid out 
for them. They just need to use them, maybe modify them and configure them. 

• Smaller retraining/relearning time: A developer who is familiar with the 
framework and loader design, can more easily move on to a different loader and 
start working on improving it much faster than before the Framework existed. 
This is achieved on two fronts: the internal structure of a loader and the 
technologies being used. By using a common set of underlying technologies, one 
has to learn them only once as they move from loader to loader. 

On the other hand, several negative aspects were identified: 

• High RITIS loader dependency on Framework revisions: If a bug exists in the 
Framework, then it makes it into all loaders dependent on the Framework. After 
the Framework is fixed, all loaders using it have to be retested with the new 
revision of the framework. Many times, a particular revision of the framework 
(which contains the identified bug) together with several loaders are already in 
production systems, thus it can take significant time until the productions systems, 
together with the Framework and the loaders, get fixed. Moreover, by modifying 
the framework, one can introduce new bugs in otherwise functioning loaders that 
depend on it. On the other hand there is also the potential trade-off that if a bug is 
fixed in the Framework, then it gets fixed in all loaders. However, in practice, this 
potential advantage does not seem to overcome the former problem of inter-
dependency. In conclusion, maintainability is compromised, however we try to 
address this issue in the Future Work section. 



• Coordination problems: During the common period of Framework and RITIS 
loader development, we identified some coordination problems with having such 
an approach. Whenever a new revision of the Framework was ready, it had to be 
included in the development environment of the RITIS loaders, in order for them 
to take advantage of the latest bug fixes and new features presents. This created 
some queuing problems that did not exist before the Framework was developed. 
Before the Framework existed, every loader was completely independent of each 
other and thus every developer would take ownership of their loader and build it 
in parallel with other developers’ loaders. When we started using the Framework, 
there were times when developers identified certain feature requests or bugs in the 
Framework. Thus, they were forced to wait until these requests were fulfilled 
before they were able to continue working on the particular component that 
required the improvements made. Moreover, as new revisions of the Framework 
were released, developers who did not even have a problem with using older 
revisions were forced to integrate their code with the new revisions, thus cutting 
down on their productivity. 

Even though the two problems mentioned here seem to have a lot of space devoted to 
them in comparison to the positive aspects, overall the RITIS Development Framework 
was considered a success. It allowed the CATT Lab to standardize the loader 
development process and spend less time training and teaching new employees about the 
development process, the underlying technologies and loader design principles, while 
spending more time getting new data sources from new agencies integrated with RITIS. 

7 Future Work 
We have already identified some areas that require future addressing. More 

specifically, we believe that more work needs to be done in tweaking the RITIS 
development process within CATT Lab in order to better accommodate loader software 
developers with respect to RITIS Framework changes. We suggest adopting a separate 
internal development cycle for the Framework in order to achieve that. 
Furthermore, the RITIS Framework can be improved by including more preset classes 
that would help several other kinds of loaders. For example there can be further 
abstractions defined for connecting to HTTP data sources (as opposed to JMS), dealing 
with other types of data such as RSS Feeds or Comma Separated Value (CSV) files and 
allowing various ways of persistence in the database such as simple JDBC queries. 

8 Conclusions 
In the field of Intelligent Transportation Systems, CATT Lab is a pioneer at 

integrating data from various governmental and private agencies. During the integration 
process, the CATT Lab software developers face challenges of varying degrees of 
complexities in adapting the originating agency’s data format to the internal RITIS 
format. These challenges differ in terms of complexity, technologies involved, amount of 
stability and redundancy required, and one’s prior knowledge of similar problems and 
systems. 



The RITIS Development Framework is an answer to an increasing amount of similar but 
slightly different challenges that RITIS loader developers were facing as CATT Lab was 
receiving more and more data sources to integrate. The Framework has succeeded in 
improving several aspects of loader development, but as it started being used more within 
the organization, we also identified several problems with it. In either case, the 
Framework has reached its minimum goal: to become a guideline for loader development 
in integrating legacy data from across different systems. While some aspects can use 
some improvement, we hope that future developers will take initiative in implementing 
our suggested changes and thus provide an even better product in an emerging field. 



9 References 
[1] Bocquet, Aurelien, and Christophe Gransart. "Multi-model architecture for ITS 

software design improvements." 7th International Conference on ITS 
Telecommunications. Côte d’Azur, France: IEEE, 2007. 1-6. 

[2] Center for Advanced Transportation Technology Laboratory, University of 
Maryland, College Park. CATT Laboratory. 2009. http://www.cattlab.umd.edu/ 
(accessed December 1, 2009). 

[3] —. Regional Integrated Transportation Information System. 2009. 
https://www.ritis.org/ (accessed November 29, 2009). 

[4] Choi, H, Y Choi, and K Yeom. "An Approach To Software Analysis and Design 
Based on Distributed Components for Intelligent Transportation Systems (ITS)." 
ISIE. South Korea: IEEE, 2001. 649-654. 

[5] Heistracher, T, R Widmann, B Stadlmann, and J Zellinger. "An Event-based 
Communication Environment for Multi-Modal Traffic Information Systems." 
Intelligent Transportation Systems Conference. Toronto, Canada: IEEE, 2006. 1214-
1219. 

[6] Kelly, S M, J W Myre, Price M, E D Russell, and D W Scott. "Configurable, Object-
Oriented, Transportation System Software Framework." (Sandia National 
Laboratories, Department of Energy) August 2000. 

[7] Kiel, D E. "Design and Implementation of a Prototype Multi-Agency Transportation 
Information System in Pennsylvania." Edited by D D Moyer and T Ries. 
Proceedings of the Ninth Symposium on Geographic Information Systems for 
Transportation (GIS-T) (American Association of State Highway and Transportation 
Officials), March 1996: 111-122. 

[8] Lussier, R, and J H Wu. "Development of a Data Exchange Protocol Between 
EMME/2 and ARCINFO." Procedeeings of 1997 ESRI user Converence 
(Environmental Systems Research Institute), July 1997. 

[9] Ning, B, and X Li. "A Comprehensive Information System for Railway Networks." 
Publication of: WIT Press (WIT Press), 2002: 897-904. 

[10] Ort, Ed, and Bhakti Mehta. "Java Architecture for XML Binding (JAXB)." Sun 
Developer Network (SDN). March 2003. 
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/ (accessed 
December 1, 2009). 

[11] Red Hat Middleware, LLC. Hibernate.org. 2009. https://www.hibernate.org/ 
(accessed December 1, 2009). 

[12] Research and Innovative Technology Administration. "RITA US Frequently Asked 
Questions." Research and Innovative Technology Administration. 
http://www.its.dot.gov/faqs.htm (accessed December 1, 2009). 

[13] Scherer, W T. "The Development of Integrated Transportation Systems Management 
(ITSM) in Northern Virginia." Proceedings of Merging the Transportation and 



Communications Revolutions. Abstracts for ITS America Seventh Annual Meeting 
and Exposition (ITS America), June 1997. 

[14] SpringSource. About Spring. 2009. http://www.springsource.org/about (accessed 
December 1, 2009). 

[15] Sun Microsystems, Inc. "Java Message Service (JMS)." Sun Developer Network 
(SDN). 2009. http://java.sun.com/products/jms/ (accessed December 1, 2009). 

[16] The Apache Software Foundation. Apache ActiveMQ. 2008. 
http://activemq.apache.org (accessed December 1, 2009). 

[17] Yang, Qingyan, Heng Wei, Jeffrey R Manring, and Preeti Agarwal. "XML, SOAP 
and Web Service: A New Option For ITS C2C Communication and 
Interoperability." National Research Council (US) Transportation Research Board. 
Berkeley CA: UC Berkeley Transportation Library, 2003. 20p. 

[18] Zavattero, David, and Wei Wu. Design of the Gary-Chicago-Milwaukee Gateway: A 
Multi-Modal Traveler Information System. Reston, VA: American Society of Civil 
Engineers, 2004, 75-88. 

 
 



Appendix A: RITIS Development Framework UML 
Diagram 

 


