
Indexing Techniques for Temporal Text Containment Queries 
 

Sharath Srinivas 
University of Maryland, College Park 

sharath@cs.umd.edu 

 
ABSTRACT 
 
Many information management systems maintain multiple time stamped versions of 
documents. The archives of web pages, version control systems, wikis and backup 
mechanisms are examples of such systems. For such temporally versioned document 
collections, a search using keywords along the temporal dimension is valuable. This paper 
studies the temporal dimension of keyword search in the context of text document 
collections. The inverted index, which is an integral part of keyword based IR technique, 
requires several extensions for it to support keyword search over temporal document 
collections. We propose a number of techniques that explore such extensions. Several 
experimental results are also presented to compare the proposed solutions. 
 
INTRODUCTION 
 
In many Information management applications, sequences of document versions updated at 
different times exist. Such sequences naturally occur in web pages (where there are updates), 
wikis, code repositories and backup mechanisms. In such systems a document is said to be 
“ alive ” for a certain period of time until it is updated at which point it becomes an old 
version. Figure 1 shows the evolution of a versioned document collection. The three 
documents shown in the figure undergo a series of updates. The versions V3, V2, V5 are the 
currently alive versions of the documents Doc1, Doc2, Doc3 respectively. All other versions of 
the documents are old. Also, versions V2, V1, V4 of documents Doc1, Doc2, Doc3 were alive at 
time t = ts. 
  
 
 
 
 
 
 
 

Figure 1: Evolution of versioned document collections 
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     For temporal document collections, a search involving both the text and the time 
(temporal text containment query) is valuable. Current Information Retrieval techniques, 
which support efficient keyword search over document collections are not well suited to 
support a search involving both keywords and the temporal specification. In order to support 
search involving both keywords and time two approaches can be taken. The first approach is 
to search on the most recent version of the documents. Though time is not a dimension of the 
search query in this approach, only currently alive documents are searched. The past versions 
of the document are not retrieved, even if they were highly relevant to the query. In the 
second approach, different versions of the document are treated as independent documents 
and are indexed separately. Though this technique can retrieve any version of a document 
that is most relevant to the query, it cannot support queries involving time as one of the search 
dimensions. 
 
     The ability to archive and retrieve any version of a document from a collection of 
versioned documents is very important. Many information exchange mediums like the web 
and the Wiki are ephemeral because of constant updates and a development environment that 
is collaborative. Unless an effort is made to archive the temporal data, it might be lost 
permanently because of overwrites by newer versions. Archiving of versioned document 
collections is an important problem and has received significant attention in the recent times 
[1, 2]. Though archiving of temporal data has been a well-studied problem, the equally 
important problem of retrieving data from such archives has not been significantly addressed. 
The primary requirement of a temporal text containment query technique is that it should be 
able to support search along two dimensions: terms and time.  Further, it should be able to 
retrieve any version of the document that closely matches the user-specified search 
dimensions. 
 
The queries over temporal document collections can be classified into the following three 
types: 

I. Given a set of keywords find all the relevant documents, possibly ranked by their 
relevance to the query. 

II. Given a set of keywords and a time slice t, find the relevant documents alive during t.  
III. Given the keywords and a time range [ts, te), find all the relevant documents that were 

alive during this time range. 
 
    Since keywords are the most effective manner for the users to express what they are 
looking for in document collections, it is included in all the three query types.  The only 
difference among the three query classes is the inclusion/ non-inclusion of the time 
dimension or in the type of queries along the time dimension (point or range queries). 



 
     For fast retrieval of documents that contain terms in the user query, an index over the 
terms in the documents needs to be built.  The inverted index [3] is the most widely used 
indexing technique in search engines. It is a data structure that efficiently stores for each 
distinct term in the document collection, the list of all documents that contain the term. Apart 
from this information, the inverted index can store a few other information like the frequency 
of occurrence of the terms in a document and also position of the terms inside the 
documents. This additional information can help in ranking the search results when there are 
more than one result that match the user query. In its simplest form, the inverted index 
correspond to a set of documents D = {D1, D2,…, Dn}, where Di represents the document 
identifier. If T = {T1, T2,…Tm}  represents the set of all distinct terms in D, a B+ tree is built 
over T. This B+ tree, which is called the Vocabulary, maps each term to its idf score and an 
inverted list of postings. Each posting stores the document identifier and other information 
about the term, called its payload. Thus, each posting in the inverted list is of the form < di , 
p>, where p represents the payload corresponding to a term ti in a document di.  The structure 
of inverted index is as shown in Figure 2. 
 
 
 
       
 
 
 

 
 

 
Figure 2: Inverted index organization 

 
    The simple B+ tree vocabulary when extended to index temporally versioned document 
sequences has a major problem.  The B+ tree is built using only the document terms as the 
key and thus can only search using keywords. It does not support time as one of the search 
dimensions. In Section 3, we propose several solutions to handle this problem. The rest of this 
paper is organized as follows, in Section 2, we discuss the related work in the area of full text 
indexing, multi-dimensional data indexing and temporal data management. In Section 3, we 
present the techniques that we have explored for answering temporal text containment 
queries. The experimentation results of the techniques presented in Section 3 are provided in 
Section 4. Finally in Section 4, we conclude this paper. 
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2. RELATED WORK 
 
In this section we review the recent work in the area of full text indexing, multidimensional 
indexing, temporal databases and temporal storage and retrieval, all of which form the basis 
of our work. 
 
2.1. Full Text indexing 
 
In any IR technique, the user issues a query and all documents containing terms in the query 
are retrieved. Though all the documents can be sequentially scanned to find terms in the user 
query, this technique is very inefficient for large document collections. So, all IR techniques 
use some form of indexing to speed up the search. In full text indexing, almost every word in 
the document is used as an index term. The most popular full text indexing methods are 
inverted index [3, 4] and signature files [5]. The other indexing technique which is widely 
used and which is not a full text indexing technique is Latent Semantic indexing (LSI) [6, 7]. 
In the inverted index, for each term, the list of all documents in which the term was contained 
and additional information like the frequency of the occurrence of the word in the document 
are stored.  The terms are organized as a B+ tree for fast lookup. When a search is performed, 
the B+ tree storing the terms is queried with each term in the user query. The size of the 
inverted index can be huge for large document collections. Several works like [5] address the 
issue of compressing the inverted index. Since most of the space in the inverted index is 
utilized for storing document IDs and offsets, integer compression techniques can be used to 
restrict the size of the inverted index. In the signature file approach to indexing text, every 
word is assigned a bit pattern of size F with m bits set to 1 and others set to 0. The word 
signature is calculated using a hash function. The signature of the entire document is 
calculated as the logical OR of all the signatures of the words present in the document. Every 
query issued by the user is also assigned a signature. The query is processed by matching its 
signature against that of the document. False positives can occur if a query signature matches 
a document signature, but the word is not in the document. The signature files are less widely 
used because of issues in the index size and the false positive rate. Another popular 
Information Retrieval technique is the Latent Semantic Indexing (LSI). In most IR 
techniques, the terms in the documents and the query terms are literally matched. Such 
techniques fail to recognize synonymy (multiple words having the same meaning) and 
polysemy (words having multiple meanings). This problem is addressed in LSI, where a 
document and a query can have high cosine similarity even if they do not share common 
terms. In LSI, a low rank Singular Value Decomposition (SVD) of the document-term matrix 
is obtained. The projection into the latent semantic space is chosen such that the 
representations in the original space are changed as little as possible when measured by the 
sum of the squares of the differences. For a more detailed survey on LSI refer to [6].               



 
2.2. Multidimensional Indexing 
 
Multidimensional indexing structures are data structures that support indexing and retrieval 
of objects that have more than dimension. Multidimensional data include points, line 
segments, rectangles, and polygons in 2D, 3D or higher.  Storage and retrieval of 
multidimensional data is important in many business, scientific and engineering application. 
Multidimensional access methods can be classified into Point Access Methods (PAM) and 
Spatial Access methods (SAM) [8]. PAM is primarily designed to index and search 
multidimensional points that do not have any spatial extension. SAM is designed for objects 
that have spatial extent like lines, polygons or higher dimensional polyhedron. Some popular 
PAM include Grid files [9], Quad-trees [10] and kd- trees [11]. The grid file is a 
multidimensional array used as an index to objects that have multiple dimensions. This 
method is based on hashing and guarantees that any record can be retrieved by at most two-
disk access. This is done by making use of a grid directory consisting of grid blocks and all 
records in a block are stored in the same bucket. The grid itself is maintained in the main 
memory and is represented as d one-dimensional arrays called scales. In Quad-trees, every 
internal node conceptually represents a square and it has four children.  The four children 
represent the four quadrants of the square. The quad tree is recursively defined: split the 
current data into four quadrant and recursively construct quad-trees for each quadrant. In kd-
trees, at each intermediate node, the k-dimensional space is split into two parts by a (k-1) 
dimensional hyperplane. The direction of the split alternates between the k possibilities from 
one tree level to the next. The most popular SAM techniques include R trees [12] and R+ 
trees [13]. In R-trees, a set of hierarchically nested Minimum Bounding Rectangles  (MBR) is 
maintained. Each node of the R-tree stores a variable number of elements. Each element 
stores a way of identifying the child node and a MBR of all the elements inside the child 
node.  R+ trees are an extension of the R-trees, wherein overlapping of internal node is 
avoided by inserting an object into multiple nodes if necessary. 
 
2.3. Temporal Databases 
 
Temporal databases are databases where time is a first class object.  They have a temporal data 
model and a temporal version of structured query language (SQL).  Traditional relational 
databases are sometimes known as snapshot databases because they do not keep the history of 
the relations. In contrast, temporal databases make use of temporal attributes to record the 
history of the tuples. The tuples are never deleted and they are versioned to maintain their 
history. Temporal databases can be classified as Transaction-time databases [14], Valid Time 
databases [15] or bitemporal databases. Transaction time is defined as the time when a fact is 
stored in the database. In transaction time databases, history of the database activity is 



recorded rather than the real world history.  Valid time is defined as the time when a fact 
becomes valid in real life.  The valid time database stores the entire temporal behavior of an 
object. Bitemporal data denotes both the valid time and transaction time of the data. A 
bitemporal database combines the features of both the transaction and the valid databases. In 
a transaction-time database, both the current and the past data needs to be maintained. Thus, 
an object deletion is logical in nature, and not physical. (i.e., A tuple delete operation in the 
database is treated as an update to the end time of the tuple and not as a physical delete from 
the disk.) As a result, the database size grows exponentially in size with new updates to the 
relations. In order to retrieve data from such huge archives, very efficient data structures are 
necessary.  Some of the multi-dimensional data structures discussed in Section 2.3, like quad-
trees, kd-trees and R+ trees are used for this purpose. In valid-time databases, the past states of 
an object are not kept. When an object deletion occurs, the corresponding object is physically 
deleted from the database. The database and the index sizes of valid time databases are much 
more manageable compared to transaction time databases. For a more detailed survey on 
temporal databases we refer the reader to [16]. 
     
2.4. Temporal Data Retrieval Techniques  
 
With the growing amount of archived data both on the Internet as well as local document 
collections, retrieval of time-stamped data from versioned document collections has received 
some research attention in the recent years.  The pioneer work in this area was done by Anick 
and Flynn [17]. In their approach, the current versions of the documents are stored as 
complete versions, and backward deltas are stored for the historic versions. The current 
versions can be accessed very fast, whereas accessing the previous versions is not very 
efficient.  The V2 temporal database system [18] developed by Norvag makes use of a 
combination of text indices and time indices to perform efficient text containment queries.  A 
more refined version of the V2 temporal database system with more efficient index space 
utilization, called Interval based Temporal Text Index (ITTX) [19] was developed by the 
same authors.  In ITTX, an implicit assumption that the past data is less frequently queried 
compared to the current data is made. Separate indices are maintained for the past and the 
current data. The past data stores both the start and the end timestamps. The current data 
stores a single timestamp, denoting the start timestamp of the data. Since there is no end 
timestamp for current data, access to this data is much faster. When the current data is 
updated, it is transferred from the current index to the past index and its end timestamp is 
updated. Text search over temporally versioned document collections such as the web has 
been studied in [20]. Extensions to the inverted index to support temporal queries are 
proposed. Approximate temporal coalescing is used to reduce the size of the inverted index. 
In temporal coalescing adjust versions of the inverted index postings that have similar 
payloads are merged, while keeping the maximum error bounded. Several optimizations are 



made by materialization of the inverted index. Though this technique results in smaller index 
sizes, it only provides approximate answers to queries, which might not be desirable in many 
applications. 
 
3. PROPOSED SOLUTIONS 
 
The inverted index is an indexing data structure that is currently an integral part of all full 
text search engines. Any extension made to a text search engine to support temporal term 
queries clearly requires modifications to the inverted index. In the regular inverted index, a 
vocabulary B+ tree is maintained which maps the terms to their inverse document frequency 
(idf) score and an inverted list. The idf score is a measure of the informativeness of the term. 
The inverted list LT of a term T contains a list of postings of the form <Document ID, term 
frequency>. The Document ID is a unique identifier that is associated with a document and 
the term frequency is the frequency of occurrence of T in the document identified by 
Document ID.  It is important to note that for every term T, it has a single idf score, common 
to the entire document collection. However, the tf scores are document specific and their 
values can vary across different documents in the same collection. In order to find documents 
in a ranked order according their relevance to the query a relevance function is necessary. 
The relevance function used in most search engines is the tf.idf score. Higher tf.idf score is 
considered to imply higher relevance between the query and the document. When the 
inverted index is extended to support temporal document collections, it is much more 
efficient to decouple the tf and the idf scores. This is similar to the technique used in [20]. At 
a snapshot of time, a term has a single idf score and over time its scores might vary. So, the idf 
score for a term is essentially a time series. For all the terms in the document collection, we 
have to manage a collection of time series data. The index to store the idf scores is shown in 
Figure 3. 
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Figure 3: The idf index 
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we use the following notation: T represents the terms of the document, Di represents the 
document identifier, t represents the time at which the document di was alive. The terms in the 
user queries are represented by Tq. 
 
   We have persued two different approaches to the problem of indexing temporal document 
collections. In the first approach, every version of a document is treated as a new document. 
So, subsequent versions of the same document get different document identifiers even if the 
changes between them were minimal. Consider two different versions of a document, with 
document identifiers D1 and D2. A term Ti can occur in both documents D1 and D2. In this 
case, the term Ti is indexed twice, once as the term Ti belonging to D1 and the next time as the 
term Ti belonging to D2. This approach simplifies the problem of indexing temporal 
document collections to a large extent, but the resulting index sizes can be huge. The 
Vocabulary Index, Hierarchical Vocabulary-Time Index, Multidimensional Index (kd-tree) 
and the Independent Vocabulary and Time Index techniques explained in the next 
subsections are consistent with this approach. In the second approach, a document and all its 
subsequent updates are treated as a single document with multiple versions. In this case, the 
document D and all its versions v1, v2,…vn are represented as D.v1, D.v2, … , D.vn. If the 
frequency fi of a term Ti is same in consecutive versions of the same document, the term is 
added to the index just once with a start time (the time at which term first occurred in 
document with frequency fi) and the current time as the end time. When the frequency of the 
term changes from fi to some other value, say fj, its end time corresponding to fi is updated 
and a new entry corresponding to the frequency value fj is added to the index. The term vs 
time representation of this approach is Figure 4. This corresponds to a single document and 
all its revisions. The techniques explained in subsections 3.5. and 3.6. fall under this 
category. 

 
Figure 4: Time Vs Term representation 

 
 



 
 
3.1. Vocabulary Index 
 
In the naïve approach, a vocabulary V containing all the distinct terms in the versioned 
document set is maintained. For each distinct term Ti in the vocabulary V an inverted list of its 
postings is maintained. Each posting stores the document Di in which the term was present, 
the time ti at which the document Di was alive and the frequency fi of the occurrence of the 
term. Further, the postings for a term are sorted in the order of the frequency of occurrence 
of the term.  The vocabulary V is organized as a B+ tree, for fast lookup of the terms.  The 
organization is as shown in Figure 5. 
 
 
 
 
 
 
 

 
 

Figure 5: Vocabulary Index 
     For type I queries the Vocabulary index can be used to find the posting list corresponding 
to terms in the query. For type II and III queries, after finding the postings list corresponding 
to a term. The list it has to be filtered to remove the documents that were not alive during the 
time slice or the interval.  The result of all these three query types on the vocabulary index is 
already sorted on the frequency of occurrence of the term. Though the vocabulary index is 
highly efficient for keyword-only queries, for queries that involve both keywords and time, 
they are inefficient, as the posting list has to be linearly searched to find the postings alive 
during the time mentioned in the query. This requires bringing all the postings from the disk 
to the memory, which incurs a significant cost. The naïve algorithm to perform a type III 
query over the vocabulary index is shown in Figure 6. 
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Figure 6: Algorithm for Type III query over the vocabulary index 
 
3.2. Hierarchical Vocabulary-Time Index 
 
The problem with Vocabulary index is that it is not efficient for queries involving both time 
and keywords. Since time was not a part of the index, all the elements in the posting list had 
to be linearly searched for the time values mentioned in the query. In order to solve this 
problem using the Hierarchical Vocabulary-Time (HVT) Index an index is built both on the 
time as well as the keywords. This approach is similar to the two level AP-Index proposed by 
Gunadhi and Segev [21]. The structure of the HVT index is shown in Figure 7. In the HVT 
Index, first a B+ tree on the terms in the documents is built. Each leaf entry Ti of the B+ tree 
points to an append-only tree indexed on the time called a time index.  The leaf entry of the 
time index points to a posting list (<Document ID, frequency>) sorted on the frequencies. 
 
  
 

 
 
 
 
 
 
 
 
 
 

Figure 7: Hierarchical Vocabulary-Time Index 
 

     For type I queries, the vocabulary index can be queried to find the time index that 
corresponds to a term. The posting list of all the leaves in that time index are then merged 
and then sorted on the frequency of occurrence of the terms. For type II queries, the 
vocabulary index is first queried to find the time index corresponding to the term and then 
the time index is queried on the time slice given in the query. This returns the results sorted 
on the frequency of occurrence of the term.  For type III queries, involving keyword and a 
time range [ts, te) the same procedure like before is followed, but the only change is that the 
posting lists corresponding to ti > ts and ti < te are merged and then sorted on frequency fi. 
The algorithm to perform Type III queries on HVT index is shown in Figure 8. 
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 Input: 
 Term: Tq  
 Time range: (ts, te)  
 Procedure: 
1 From the vocabulary index V, find 

the Time Index TI corresponding to 
Tq  

2 If exists(TI) 
3       From TI find the entries t such 

that t > ts and t < te  
4    For each such entry ti    
      Result = Result + posting list 

corresponding to ti 
5 Sort Result on the frequency f 

 
Figure 8: Type III queries on HVT Index 

 
    The HVT Index is very efficient for type II and III queries because an index on the time 
exists. However, for type I query the results are not sorted on the frequency and this sorting 
operation acts as a bottleneck.  
 
3.3. Multi-Dimensional Index  
 
In the multi-dimensional index approach, the <term, time> pair (<T, t> pair) obtained after 
breaking the document into its terms is organized as nodes of a kd-tree. Further the nodes 
point to a posting list of <Document ID, frequency> pairs sorted on the frequency. The 
distribution of the <T, t> pair on a plane is shown in Figure 9. The organization of this pair as 
a kd-tree is shown in Figure 10. Each node of the kd-tree is associated with rectangle in the 2-
dimensional space. The terms represent the horizontal axis of this 2-d rectangle and the time 
represents the vertical axis. When a new <T, t> pair is inserted into a node of the kd-tree (or 
equivalently into a rectangle), the rectangle is split by a horizontal or a vertical splitting line 
that passes through that point. In order to choose the cutting dimension, the time and the term 
axis are alternated. In the example in Figure 10, the root is split on the term axis. All nodes to 
the left of the root have term value less than the root node and all nodes on the right have 
higher term values. In the next level of the tree the nodes are split on the time dimension. 
This way the cutting dimension need not be explicitly stored anywhere and can be 
determined implicitly as the tree is being traversed.      



 
Figure 9: A distribution of the (term, time) pair on a plane 

 

 
Figure 10: A kd-Tree for the (term, time) distribution in Figure 7 

 
    For type I queries involving only keywords, all nodes to the left of a parent node split on 
the term dimension has term values less than the parent and all nodes on the right have 
greater term values. While traversing through the kd-tree only the alternate levels of the tree 
that are split on the terms are used for traversal and the levels split on the time dimension are 
not used at all.  For type II queries, the levels of the tree split on time and the term dimensions 
are both used for traversal. For type III queries that involve a time range, the posting list of all 
matching nodes have to be merged and sorted according to the frequency of occurrence of 
the term. The run time of the multidimensional index created using kd-trees is O(log n) 
assuming that the elements are inserted in a random order. However, in our application, the 
new terms added to the index are in monotonically increasing time order. Thus, the kd-tree 
index becomes severely unbalanced and the performance is several orders of magnitude 
slower compared to the balanced kd-tree. The experimentation results in section 4 provide 
more insights on the compatibility of kd-trees for temporal term data. 
 
 



3.4. Independent Vocabulary and Time Indices  
 
The Independent Vocabulary and Time (IVT) index addresses some of the issues 
encountered in the previously discussed techniques. In the IVT index approach separate 
indices are maintained for both the term and the time dimension. The terms in the document 
are organized as a B+ tree in the vocabulary index. The leaves of the tree point to a posting 
list of <Document-ID, frequency> pair sorted on the frequency. The time values are organized 
as a self-balancing splay tree [22]. The advantage of maintaining time values as a splay tree is 
that even though the values being inserted into the tree are monotonically increasing, the tree 
remains balanced and provides an amortized running time of O(log n). The leaves ti  of the 
Time Index point to a posting list of document IDs. These document IDs represent the 
documents that were alive at time t = ti. The structure of the IVT index is as shown in Figure 
11.  
 
 
         

 
 
 

 
 
 
 

Figure 11: Independent Vocabulary and Time indices. 
 

     For type I queries, since time is not a part of the search, only the Vocabulary index is used 
to answer the queries. Further, the <Document ID, frequency > list corresponding to a term is 
pre-sorted on the frequency. Thus, search with a term on the Vocabulary index will retrieve 
documents in the increasing order of the frequency of the terms, irrespective of the time at 
which the documents were alive.  For type II queries, both the Vocabulary index and the 
Time index have to be used to answer the queries. First, the Vocabulary Index is queried to 
find the term in the query. This returns the posting list corresponding to the term.  However, 
it is possible that some documents in this retrieved list were not alive at the time mentioned in 
the query. So, the Time Index is queried with the time mentioned in the query. This returns 
the set of documents that were alive at that time. Finally, the results from the two indices are 
joined on the document ID attribute to obtain the final result. The algorithm to perform type 
III queries over the IVT index is shown in Figure 12. In step one, the term is searched in the 
vocabulary index. The list of all documents in which the term was present is retrieved and it is 
already sorted on the frequency of occurrence of the term. In the second step, the time index 
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is searched to find all documents alive during the queried time. Further, step one and two are 
completely independent of each other and can be parallelized for speedup. 
 

 Input: 
 Term: Tq  
 Time range: (ts, te)  
 Procedure: 

1 From the vocabulary index V, retrieve 
the list L of documents containing the 
term. 

2 From the Time index find the list of 
documents D = {D1, D2, … Di} alive 
between ts and te 

3 Result = Join L and D on the document ID 
attribute.  

 
Figure 12: Type III queries on the IVT index 

 
3.5. Multidimensional Index (R+ trees)          
 
In this approach, the <term, time, frequency> (<T, t, f>) triplet is organized as the nodes of a 
R+ tree.  Further, the nodes point to a list of document version numbers.  The organization of 
the triplet is shown in Figure 13. 

 
Figure 13: Organization of  <time, term, frequency> triplet 

 
    In our approach, the nodes of the R+ tree correspond to a 2-dimensional rectangle. Each 
non-leaf node of the R+ tree contains entries of the form <pointer, MBB), where pointer is the 
address of the child node and MBB is the Minimum Bounding Box of all entries in the child 
node. The leaf nodes are of the form <pointer, object>, where pointer refers to the database 



object, and object is the <T, t, f> triplet. The R+ tree for the organization in Figure 13 is 
shown in Figure 14. The objects that span across more than one MBB are stored on several 
different nodes.  The way search is performed for all the three query types on the R+ tree is 
very similar. For every rectangle in a node, it has to be verified if it overlaps the search query. 
If it overlaps, the corresponding child node has to be searched also. The whole tree is 
searched recursively until all nodes that overlap with the search query have been traversed. 
When a leaf node whose start and end times overlaps with the query is reached, the object is 
added to the result list. The performance of R+ trees index over temporal text is sub-optimal 
as the data values vary independently of the time. The data values are not clustered and this 
results in more MBBs and hence much bigger R+ trees, resulting in poor performance as 
shown in the experimentation section.      
 

 
Figure 14: R+ tree for a set of <T, f, t> triplets 

 
3.6. Vocabulary and Interval Index  
 
     This approach is similar to the IVT index discussed in Section 3.4. In this approach, 
separate indices are maintained for both the terms and the time values. The <terms, 
frequency>  pair are organized as a B+ tree in the vocabulary index. The leaves of the tree 
point to a posting list of Document ID.Version. The time values are organized as an interval 
tree [23]. This interval tree stores elementary intervals of the form <tstart ,tend>. The elementary 
intervals point to the <Document ID.version> list, which is the list of all document and its 
versions that were active between time tstart and tend. The interval tree is nothing but a binary 
tree where every node N contains entries of the form N.value and two pointers N.left and 
N.right. All the nodes to the left of N have values less than N.value and all the nodes to the 
right of N have greater than that of N. The elementary intervals with tend values less than 
N.value are stored in the left subtree of N and those with tstart greater than N.value are stored 
in the right subtree of N.  The intervals with tstart value less than equal to the N.value and tend 
value greater than equal to the N.value are stored in the node N. A set of intervals and their 
corresponding interval tree is shown in Figure 15. The interval tree can be used to find 
documents alive during a queried time slice tq or a time range (tqs, tqe). For a more details on 
point and range search algorithms on the interval trees refer to [23]. 

 
 
 



 
Figure 15: A set of intervals and their corresponding Interval tree 

 
The procedure to perform all the three query types over the Vocabulary and Interval index is 
similar. In Figure 16, we show type III queries over the Vocabulary and the Interval Index. 

 Input: 
 Term: Tq  
 Time range: (ts, te)  
 Procedure: 

1 From the vocabulary index V, retrieve 
the list LV of document versions 
containing the term. 

2 From the Interval index find the list of 
document versions DV alive between ts 
and te 

3 Result = Join LV and DV on the document 
ID.version  attribute.  

 
Figure 16: Type III queries on the VINT index 

 
4. EXPERIMENTAL EVALUATION 
 
We conducted a set of experiments on real world datasets to compare the solutions proposed 
in the previous section. Since all the solutions that we have proposed are exact techniques, 
they produce similar precision and recall values.  For the purpose of comparison, we mainly 
focus on the index size and the retrieval times.  
 
 
 



 
4.1. Data and system setup 
 
The techniques proposed in this paper were implemented using Java JDK 1.5. The 
experiments were run on a Xeon 3 GHz machine with 2GB of RAM. The numbers reported 
were averaged over 10 runs.  All the data and the indices were stored using the Berkley DB 
open source database system [24]. 
 
     For the data, we made use of revision histories from the English Wikipedia. The Wikipedia 
provides access to all the revision histories for a wiki article. There are some popular wiki 
articles that involve a lot of edits and modifications. There are also topics for which the edits 
are much less frequent and involve minor changes. We constructed two datasets from each of 
these two categories. Dataset 1 corresponded to 1000 versions of a wiki page for which there 
were frequent and major modifications spanning over a period of sixteen days. The average 
number of terms in this wiki page (excluding stop words) was 4341. Dataset 2 corresponded 
to 1000 versions of a wiki page for which the changes were minor and span over a year. The 
average term count for this wiki page was 2136. We built a query workload using a few 
keywords that were present in the wiki pages and also a randomly sampled time slice/range 
from within the duration spanned by two datasets.   
 
4.2. Index sizes 
 
Our first set of experiments examine the index sizes of the techniques proposed in the 
previous section.  The index size for both our datasets is summarized in Table 1. 

Technique 
Index size for 

Dataset 1 (in MB) 
Index size for 

Dataset 2 (in MB) 

Vocabulary Index 28.6 16.2 

HVT Index 67.4 33.7 

kd tree Index 46.8 31.5 

IVT Index 72.3 36.7 

R+ tree Index 65.7 21.6 

VINT Index 60.1 20.6 

 
Table 1: Index sizes for the two datasets 

 
The vocabulary index had the least size for both the datasets as it only indexed the term 
values. The IVT index had the maximum size as both the time and the term information are 
both indexed independently. The R+ tree and the Vocabulary index approaches, which 



associate time spans with the terms, are much smaller compared to the corresponding 
techniques that associate timestamps with terms. However, the size improvement was much 
more prominent for Dataset 2 compared to Dataset 1. This is because Dataset 2 had entries 
with minor modifications across versions. Thus, the terms have much longer time spans and 
the number of index entries is less. The growth in the index size for the VINT index is shown 
in Figure 14.  For dataset 1, where the modifications between versions is much more 
prominent, the index size grows near exponentially. For the dataset 2, where modifications 
between versions are subtle, the growth in the index size is less than exponential.   
 

 
Figure 14: Growth in index size for the VINT index 

 
4.3. Query Execution time 
 
    In order to compare the query execution times, we executed the three query types on our 
two datasets. The terms to search were randomly chosen from arbitrary versions of the 
document.  For type II and III queries, a time slice/range was randomly generated from the 
duration spanned by the dataset. Figure 14 shows the search time for the type I query over 
the dataset. The performance was similar for the Vocabulary index, HVT index and the VIT 
index. Since, all these three techniques had separate indices for the vocabulary, the 
performance for the search involving only keywords was better compared to the performance 
of the other techniques. The VINT index had the best performance, as the size of the 
vocabulary index was the smallest for this technique.  



 
Figure 14: Type I queries over the two datasets 

 
The performance for type II and III queries is shown in Figure 15 and 16 respectively. For 
queries involving both time and the terms, the VI index slows down considerably as there is 
no index on the time attribute. The techniques that index both the time and the term values 
perform better than techniques that index only the terms. The query execution time is higher 
for type III queries compared to type II queries. Also, the KD tree and the R+ tree approaches 
were slower due to the large index sizes.     

 

 
Figure 15: Type II queries over the two datasets 



 
Figure 16: Type III queries over the two datasets 

 
5. Conclusion 

 
There is a growing importance for temporal text containment queries over versioned 
document sequences. The traditional information retrieval techniques, which provide efficient 
keyword based search, have to be extended to support search using both keywords and time. 
In order for the extensions to be practical, they need to be to be efficient with respect their 
space utilization and also their query execution times. In this work, we have examined various 
techniques for answering temporal text containment queries. We have also performed tests 
with two different datasets to closely examine the performance of the proposed techniques.  
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