
Hybrid techniques for classical planning

Nathaniel Waisbrot

Abstract
Two common types of planning systems are “domain-
independent” and “domain-configurable”. Domain-
configurable planners can perform very well, but require
much hand-tuning for peak performance. Domain-
independent planners do not require human aid, but do
not perform as well on some problems. Hybrid planners
attempt to combine the strengths of these two styles while
minimizing their weaknesses.

Introduction
Consider two general planning strategies: in the first, we
gather as much information as possible about the problem,
including any known algorithms for solving it, create an
informed planner, and then use this planner to solve the
problem; in the second, we do not perform any work in
advance, and the planner begins trying to compose a solu-
tion to the problem with only a shallow understanding of the
problem domain. The first strategy belongs to the domain-
specific and domain-configurable planners, the second to the
domain-independent planners.

Domain-specific planners are built to deal with a specific
problem domain or problem. While any algorithm can be
considered a domain-specific planner, the Towers of Hanoi
puzzle is a typical example of a toy domain used in AI plan-
ning. For a Towers problem with three pegs and any number
of rings, there exist known algorithms to produce optimal
solutions. This is the advantage of domain-specific plan-
ners: the quality of the planner’s solutions is limited only
by that planner’s author’s knowledge of the problem. Their
disadvantage is that they are only as good as their creator’s
knowledge, and they require all of that knowledge to be en-
coded into a program.

Domain-independent planners represent the start of Plan-
ning as its own field within AI, and they are also the most
numerous type of planner. A domain-independent planner
requires definitions for any basic action which can be per-
formed in the problem domain, but nothing more. To solve
the Towers of Hanoi problem, a domain-independent plan-
ner could be given a move-ring(ring, from, to) operator,
which includes the rules of the puzzle: only the top-most
ring on a peg may move, and a larger ring may never be
placed on top of a smaller. With this basic information, the
planner could attempt to assemble a sequence of move-ring

actions to produce the solution. In opposition to domain-
specific planners, domain-independent planners do not rely
on human understanding of the problem or any other exter-
nal knowledge, so the initial cost is much lower. However,
there is no guarantee that such a planner will find a solution
rapidly, or that the first solution it finds will be a good one.

Domain-configurable planners are also able to use exten-
sive domain knowledge, but instead of that knowledge be-
ing encoded into a programming language, it is encoded
into a representation which the planner uses to constrain its
domain-independent search. Domain-configurable planners
have the most of the same advantages as domain-specific
planners, and the same disadvantages, except that behavior
common to all planning problems has been abstracted out,
reducing the effort needed to plan in a new domain. This ab-
straction involves some implicit assumptions about the na-
ture of the planning problems, but where these assumptions
hold, the performance of the domain-configurable planner
can approach that of a domain-specific planner.

There have been a number of techniques suggested to
find a middle-ground or hybrid planner between domain-
independent planning and domain-configurable planning.
This work is based on the hypothesis that, within a planning
domain, some portions of plan generation will be easy and
well within the capabilities of domain-independent planners,
and some portions may be hard and require the deeper do-
main knowledge used by domain-configurable planners. I
will present a survey and comparison of these hybrid plan-
ning techniques.

First, I will provide an overview of domain-independent
and domain-dependent planning, including examples from
two such planners. Next, I will introduce the various
planners that hybridize domain-independent and domain-
configurable planning or produce a similar effect. Finally,
I offer some comparisons of the various systems.

Preliminaries
I provide a short overview of classical planning and some
core definitions here, based on those found in Automated
Planning (Ghallab, Nau, and Traverso 2004)–full details
may be found in that text.

A planning domain is defined as a triple Σ = (S,A, γ)
where S is the set of states, A is the set of actions, and
γ : S × A → S is the state-transition function. A given



state si contains a set of predicates which hold in that state.
A given action aj is a triple of three subsets, preconditions,
add-effects, and delete-effects. If all formulae in the pre-
conditions of action aj hold in state si, then aj is appli-
cable to state si. If an action is applicable, then γ(si, aj)
will produce some state s′

i = (si \ delete-effects(aj)) ∪
add-effects(aj).

A planning problem is a triple Π = (Σ, s0, g), where Σ
is a planning domain as defined above, s0 is the initial state
of the problem, and g is a set of predicates defining the goal
conditions. A planning problem is solved with a plan π =
(a1, a2, a3, ...) such that if the first action is applied to s0 and
succeeding actions are applied to succeeding states, then the
final state will contain g.

For simplicity, I restrict my discussion of planners to
those which work in classical domains. Classical planning
domains satisfy a set of simplifying assumptions based on
those made by the original STRIPS planner (Fikes and Nils-
son 1971). These assumptions are that S is finite, that Σ is
fully observable at all times, that Σ is deterministic, and that
plans consist of a linear sequence of actions.

Domain-independent planning
Domain-independent planners make use of general heuris-
tics to search for a sequence of operators connecting the ini-
tial planning state to a goal state. The only domain informa-
tion required by these planners is the set of operators, their
preconditions, and their effects (positive and negative).

Nearly all domain-independent planners developed re-
cently take their domain description in Planning Domain
Definition Language (PDDL) (Edelkamp and Hoffmann
2004) format, which is based on the domain descriptions
used by the STRIPS planner. A PDDL domain description
contains: names and types of every individual object which
might appear in a planning problem, all predicates which
may be used, operator definitions, and axioms used in oper-
ator preconditions for convenience.

The FF heuristic
To provide a concrete example of domain-independent plan-
ning, I present an overview of the heuristic used by the FF
planner (Hoffmann and Nebel 2001). FF combined the novel
ideas of GraphPlan (Blum and Furst 1997) with a forward
search to produce a very fast and efficient planner.

The FF heuristic provides a lower bound on the number of
actions that must be performed to transition from the current
state to a goal state. Figure 1 describes a high-level view
of the algorithm: we create a “relaxed” set of operators by
removing all negative preconditions from all operators, then
every applicable operator is applied to the current state and
a new pseudo-state is created as the union of all the operator
effects and the current state. Figure 2 shows a single step of
this process for a domain involving stacking blocks with a
robot arm. In the initial state, s, blocks y and z form the tops
of two stacks. The robot arm can grab either one, so in the
succeeding pseudo-state, s′, both blocks have been grabbed.
This is a pseudo-state and not a true state because it is not
actually possible for the arm to hold two blocks at once, or

function FF-heuristic(s, g, O)
1 for each applicable o in O do
2 s = s ∪ γ(s, o)
3 done
4 if g ⊂ s then return 1
5 else return (1 + FF-distance(s, g, O))
s is the current pseudo-state, g is the set of goal conditions,
and O is the set of all operators in the domain with their
negative preconditions removed

Figure 1: Pseudocode for the FF heuristic

!"#$%&'(!)"*+&

!"#,%&'(!)"*+&

!"#-%&$+&

!"#$%&'(!)"*+&

!"#,%&'(!)"*+&

!"#-%&$+&

.!/*0"'#-+&

.!/*0"'#,+&

'(12#,+&

'(12#-+&

!" !#"! 133/,&!34(15!(6&!&

Figure 2: One step of the FF heuristic. Two instances of the
grab operator are applicable to state s, producing pseudo-
state s′.

for blocks to be simultaneously on the ground and held by
the arm. The FF-heuristic is repeated until this pseudo-state
contains the goal conditions, and the number of iterations is
the minimum number of operators which must be applied to
reach the goal.

Given any classical problem, the FF heuristic can deter-
mine the minimal number of steps between any given state
and any given goal, and can also determine if a goal is un-
reachable (if the pseudo-state does not change after an iter-
ation, then it contains every state which is reachable from
the current state). No adjustments are needed to prepare the
heuristic for a new problem domain, and the FF planner has
been shown to perform well on a variety of planning do-
mains.

However, domain-independent planners like FF do not al-
ways perform as well as we might like. FF uses a relaxed set
of operators to avoid tracking complex mutex relationships
between effects, but this means that more complex domains
can puzzle it. Unsolvable problems may appear solvable to
the heuristic, because the solution involves an operator with
an unsatisfied negative precondition. Problem solutions may
be poor and planning slow if there is complex interaction be-
tween operators involving the repeated deletion and addition
of predicates that appear in the preconditions of other oper-
ators. Finally, FF will consider all possible actions at every
step of planning, even when some of the actions are clearly
bad.



Domain-configurable planning
Domain-configurable planners use large amounts of domain
knowledge, provided by some outside source, to restrict
their search as much as possible. These planners can es-
chew complex heuristics to guide their search because the
search space has been reduced to such a manageable size. In
general, they produce better plans in less time than domain-
independent planners. However, their performance is com-
pletely reliant on the knowledge they receive. A domain-
configurable planner that is given no knowledge, at best,
will perform an exhaustive and undirected search of the
state space of a problem. The completeness of a domain-
configurable planner is dependent on the correctness of its
domain knowledge.

There are two main types of domain-configurable plan-
ners: hierarchical task-network (HTN) planners, and tem-
poral logic planners. The background I present here will
focus on HTN planners.

HTN planners encode domain knowledge as a set of tasks.
A task represents a high-level operation to be performed,
such as traveling from one point to another using the most
efficient means of transportation. During planning, the plan-
ner must decompose each task into its components, until
eventually every task has been decomposed into a primi-
tive operator. A task may decompose into a sequence of
primitive planning operators, like those used in domain-
independent planning, or it may decompose into other tasks.

The SHOP2 planner
To provide a concrete example of HTN planning, I describe
SHOP2 (Simple Hierarchical Ordered Planner 2) (Nau et al.
2003), a well-known and proven HTN planning system. In
SHOP2, a task consists of a head, arguments, and one or
more methods. A method describes how a task can be per-
formed, e.g.:“to travel from A to B, take a taxi from A to
the airport, fly, take a taxi from the airport to B.” A method
can consist of any sequence of primitive operators and non-
primitive tasks.

Figure 3 shows a simple example of the kind of domain
knowledge used by SHOP2. The domain knowledge explic-
itly tells the planner which subtasks to perform and under
what conditions they may be performed. When the starting
location and the destination are close to each other, the plan-
ner will never consider any action other than direct travel by
taxi, and when the two points are distant from each other,
the planner will never consider traveling the entire distance
by taxi.

Despite the power of domain-configurable planners, there
are some drawbacks. Chief among them is the effort re-
quired to produce a body of domain knowledge. In figure 3
I do not show definitions for the axioms short-distance and
long-distance, which could be rather complex, depending on
the domain. For non-trivial domains, the domain descrip-
tions become extremely large and intricate.

Human authors can carelessly introduce bugs in the do-
main description, which impact the planners performance
on every problem in the given domain. Even when the do-
main descriptions are correct, to get the maximum benefit

Operator take-taxi(from, to)
preconditions: at(from)
effects: ¬at(from), at(to)

Operator take-plane(from,to)
preconditions: at(from), airport(from), airport(to)
effects: ¬at(from), at(to)

Task travel(from, to)
Method travel-by-taxi-only

preconditions: short-distance(from, to)
subtasks: take-taxi(from, to)

Method travel-by-taxi-and-plane
preconditions: long-distance(from, to), airport(a1),

short-distance(a1, from), airport(a2),
short-distance(a2, to)

subtasks: take-taxi(from, at), fly(a1, a2), take-taxi(a2, to)

Figure 3: A simple SHOP2 domain description for a travel
domain

of a domain-configurable planner, they must also be well-
crafted, requiring time, effort, and skill on the part of the
domain writer.

Attempts have been made to learn portions of domain
knowledge in HTN, by starting with skeletal methods and
refining preconditions (Ilghami and Nau 2002; Xu and
Muñoz-Avila 2005), or by using traces of experts executing
plans (Garland, Ryall, and Rich 2001; Lent and Laird 1999).
More recent research has moved towards learning enough
knowledge to replace humans as the primary domain writer
(Hogg, Muñoz-Avila, and Kuter 2008), but it remains to be
seen how closely these attempts can match human-authored
domain descriptions for performance.

Partial-knowledge planning
While domain-independent planners perform well on most
of the domains used in planning competitions, it is fairly
easy to find or create a domain where these planners perform
poorly. The Towers of Hanoi puzzle, mentioned above, is a
simple example of this. Solving the problem involves stack-
ing and unstacking the same pairs of rings many times over.
In most domains, this behavior is not productive, but in this
particular domain, it’s the only way to solve the problem.

On the other hand, domain-independent planners are
quite adequate for many problems. For example, the Paint-
Wall domain described by Long and Fox (Long and Fox
2000) is isomorphic to the well-studied Depots domain, and
therefore domain-independent planners which can plan well
in Depots can plan just as well in PaintWall. However, the
operators and state-atoms used in the domain make it appear
wholly different from Depots, and a human creating a do-
main description for a domain-configurable planner would
be unlikely to transfer the domain knowledge from Depots
into the new domain.

Ideally, a planner should be able to make use of special
domain-specific knowledge to solve difficult domains or dif-
ficult portions of a domain, and should be able to use general



domain-independent techniques on easier problems, to re-
duce its need for a large knowledge base. I have divided
these techniques into two categories: macro-planners are
domain-independent planners which have been augmented
by macro-operators–stored sequences of operators; and hy-
brid planners use both domain-configurable and domain-
independent techniques, switching between them as neces-
sary during planning.

Macro-planning
Macro-operators offer a straightforward way to provide a
basic degree of domain-specific knowledge to any classi-
cal planner. Most research into macros and planning has
centered around the best ways to learn macro-operators au-
tomatically, to produce a planner that can exploit domain
knowledge like a domain-configurable planner without ever
needing a human to encode such knowledge. Current macro-
planners are not close to this goal, but their ability to outper-
form non-augmented domain-independent planners in em-
pirical tests demonstrates the utility of automatically learned
domain knowledge over no domain knowledge at all.

One of the earliest examples of macro planning was
MACROP, an addition to STRIPS by Fikes, Hart, and Nils-
son (Fikes, Hart, and Nilsson 1972). The core procedure
they describe for generating macro operators appears in ev-
ery macro-operator paper since. Beginning with a solution
plan to some problem in the target domain, they replace the
ground atoms with variables to generalize the plan. They
apply this same lifting to the preconditions of each operator,
propagating constraints backwards through the plan. The
lifted plan is stored, with annotations recording the effect
that each step of the plan can achieve. Every subsequence
of this lifted plan is a potential macro-operator, and the
modified STRIPS planner chooses applicable macros during
planning. Fikes et al. performed experiments to show that
their system produced comparable plans in less time than
STRIPS on select problems. However, like any learning sys-
tem, MACROP does not perform well if given a small set of
randomly-selected training data, and the number of potential
macros is polynomial in the length of the training plans.

Macro-FF (Botea et al. 2005; Botea, Müller, and Schaef-
fer 2004) is a modern macro-planner, based on the source
code of the FastForward planner (Hoffmann and Nebel
2001). While MACROP abstracts its macro-operators by
generalizing a solution plan, Macro-FF’s CA-ED algorithm
generates its macros through static analysis of the domain
operators, and by grouping state information into abstract
components in the training problems. The macros are then
filtered by checking their applicability to a set of solution
plans for the target domain. Macro-FF outperformed the
FastForward planner by a significant margin on several stan-
dard planning domains.

Macros generated by MACROP could, potentially, be
quite long, but the CA-ED algorithm fixes the maximum size
of a macro to a constant chosen by the authors. Although
the maximum size of macros might be more elegantly deter-
mined based on the quantity of training data and available
storage space, limiting the size of the operators avoids some
of the problems of MACROP.

An interesting contribution from Macro-FF was the ar-
ticulation of a set of five pruning rules to remove less use-
ful or harmful macros: an operator’s precondition cannot be
negated by the effects of the operators before it (this would
create an unsound plan), a macro cannot contain two dis-
joint sequences of operators which produce the same effect
(this implies that at least one set is superfluous), an operator
should share at least one atom between its preconditions and
the effects of the operator preceding it and between its ef-
fects and the preconditions of the operator following it, and
finally the scope of a macro’s effects are restricted in an at-
tempt to keep them focused. The goal of these rules is to
produce fairly short, directed macros that achieve a specific
goal, similar to the tasks of HTN planners.

Both MACROP and Macro-FF use macros to accelerate
the search process by inserting frequently-used sequences
of operators into the plan in a single step. Other work, be-
ginning with Minton’s MORRIS system (Minton 1990), has
looked at macros as a way to store sequences which the plan-
ner is unlikely to generate. This type of macro is signifi-
cantly more difficult both to generate, and to demonstrate as
being useful.

Hybrid planners
The core notion behind hybrid planning is to take the struc-
tured use of domain knowledge from domain-configurable
planners, but permit a relaxed domain definition that does
not necessarily contain knowledge for all facets of a do-
main. In these gaps where knowledge is missing, the plan-
ner should use domain-independent techniques. The domain
knowledge can be used to optimize known critical paths in
the planner’s search, or to guide the planner away from ac-
tion sequences that are known to be useless in that domain.

Hierarchical task-network planning has frequently been
chosen to represent the domain-configurable aspect of hy-
brid planners. This may be because the hierarchical orga-
nization of tasks is a reasonably friendly interface between
the humans providing knowledge and the planning systems
using the knowledge.

Subbarao Kambhampati has performed extensive work in
hybrid planning, beginning with a modification to partial-
order planners to allow them to perform HTN planning
(Kambhampati 1995; Kambhampati, Mali, and Srivastava
1998). Partial-order planners insert actions into a plan and
then perform sucessive refinements of the plan to fix an or-
dering of actions. During refinement steps, actions may be
discovered to conflict with the rest of the plan and removed,
or new causal links may be satisfied by inserting new ac-
tions. The Refine-Plan-Htn algorithm allows a partial-order
planner to insert HTN tasks as if they were primitive op-
erators, and then performs task-decomposition during the
plan-refinement phase, removing the task and inserting its
sub-tasks with the same constraints as the parent. A major
focus of this work was to use the implementation of HTN
planning in a partial-order planning framework to examine
the advantages claimed by HTN proponents. Kambhampati
concluded that the main advantage of HTN planning was the
ability to strongly restrict the planner’s search process.

Other researchers have approached the problem from the



other side, adding domain-independent capability to HTN
planners. O-Plan (Currie and Tate 1991), an HTN planner,
allows a goal to be marked as “unsupervised”, signifying
that some outside agent (such as a domain-independent plan-
ner) will provide the decomposition necessary to achieve
the goal. SIPE (Wilkins 1988) has a similar facility. Es-
tlin et al. (Estlin, Chien, and Wang 1997) made a more ex-
plicit case for this, arguing that high-level goals should be
described with HTNs, while low-level goals should be han-
dled by domain-independent planners. They reasoned that
the major benefit of HTN-based knowledge was the ease
with which it could be reused: high-level instructions for
positioning a radar dish are the same regardless of the exact
specifications of the dish, so adding a new type to the array
is trivial if the low-level commands are generated through
domain-independent methods.

McCluskey et al. provided empirical results for hy-
brid planners with HyHTN (McCluskey, Liu, and Simp-
son 2003), a hybrid system which uses an HTN planner
to describe high-level goals and the FastForward planner to
achieve low-level goals. Testing with HyHTN showed that
its performance (both in CPU time and in solution length)
was comparable to a complete HTN planner, but without the
need to describe the domain at the low level. Although the
planner was designed to prototype planning applications for
the GIPO-II system, the test results imply that it would per-
form well as a replacement for a complete HTN planner.

The Duet planner (Gerevini et al. 2008) combines two
state-of-the-art planners, the HTN planner SHOP2 and the
domain-independent planner LPG, using a supervisory al-
gorithm to coordinate between them. Like HyHTN and
the other HTN-based planners mentioned above, Duet al-
lows the domain writer to omit definitions of low-level tasks.
Unlike the other systems, Duet also allows the domain-
independent planner to insert HTN tasks into its plan, and
have them decomposed on demand by the SHOP2 planner.

Two main arguments in favor of HTN planning that have
been advanced are that properly-constructed HTNs drasti-
cally reduce the planner’s search space to improve perfor-
mance, and that HTNs provide a friendly and reusable way
for humans to describe high-level domain knowledge to the
planning system. In a small set of experiments with Duet,
the authors found both of these to be the case.

Duet was tested using a domain called “Museums”,
formed by combining the well-known Depots domain and
the Towers of Hanoi puzzle. Museums was created because
LPG and other domain-independent planners have a great
deal of trouble with the Towers puzzle, but generally per-
form quite well in the Depots domain. Later experiments
were performed with the Storage domain from the Interna-
tional Planning Competition, a more well-known domain. In
both sets of tests, the authors found that the domains con-
tained sub-problems which were difficult for the domain-
independent planner to solve. When they gave the planner
specialized HTNs describing these subsets, without provid-
ing domain knowledge for the rest of the domain, Duet’s
performance exceeded or matched that of an HTN planner
with complete domain knowledge.

When the Duet planner was given high-level domain

knowledge concerning which goals to complete first, but
no low-level knowledge about how to actually complete
them, it generally outperformed the LPG planner running
on its own, but was not otherwise impressive. Since the
test domains were chosen for their difficulty for domain-
independent planners, this is likely also the cause for the
unimpressive showing of high-level domain knowledge.
Even so, the authors found that both the specialized domain
knowledge and the high-level domain knowledge were dra-
matically smaller and less complex than the complete do-
main knowledge required to plan with the SHOP2 planner
alone.

In theory, Duet’s mutual planning system could involve a
deeply-recursive exchange between the domain-independent
and HTN planners, but the authors did not experiment with
any domain complex enough to warrant this. Still, the ex-
periments did demonstrate the two hypothesized strengths
of HTN planning, the narrow plan search from specialized
domain knowledge and the improved ease of describing do-
main knowledge with a high-level abstraction.

Conclusion
Both domain-independent and domain-configurable plan-
ners offer benefits and drawbacks for automating planning.
Domain-configurable planners are fast and efficient, but
their performance and even completeness is entirely depen-
dent on the quality of domain knowledge which they re-
ceive. Domain-independent planners are able to plan in new
domains without requiring a large amount of new knowl-
edge, but their generalized approach to problem solving suf-
fers when they are given domains which violate implicit as-
sumptions, and they may fail to find efficient sequences of
actions in well-understood domains. Hybrid planners offer a
middle-ground between the two, using only as much domain
knowledge as the domain writer wishes to provide, and us-
ing domain-idependent techniques to solve the remainder of
the problem.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281–
399.
Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Using
component abstraction for automatic generation of macro-
actions. In Zilberstein, S.; Koehler, J.; and Koenig, S.,
eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling, 181–190. Whistler,
Canada: ICAPS 2004.
Currie, K., and Tate, A. 1991. O-plan: the open planning
architecture. Artificial Intelligence 52:49–86.
Edelkamp, S., and Hoffmann, J. 2004. Pddl2.2: The lan-
guage for the classical part of the 4th international plan-
ning competition. Technical Report 195, Albert-Ludwigs-
Universität Freiburg, Institut für Informatik.



Estlin, T. A.; Chien, S. A.; and Wang, X. 1997. An ar-
gument for hybrid htn/operator planning. In 4th European
Conference on Planning.
Fikes, R. E., and Nilsson, N. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 5(2):189–208.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial Intelli-
gence 3(4):251–288.
Garland, A.; Ryall, K.; and Rich, C. 2001. Learning hi-
erarchical task models by defining and refining examples.
In In First Int. Conf. on Knowledge Capture, 44–51. ACM
Press.
Gerevini, A.; Kuter, U.; Nau, D.; Saetti, A.; and Waisbrot,
N. 2008. Combining domain-independent planning and htn
planning: The duet planner. In 18 European Conference on
Artificial Intelligence.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning. New York: Morgan Kaufmann.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. Htn-
maker: Learning htns with minimal additional knowledge
engineering required. In AAAI, 950–956.
Ilghami, O., and Nau, D. S. 2002. Camel: Learning method
preconditions for htn planning. In Proceedings of the Sixth
International Conference on AI Planning and Scheduling,
168–178. AAAI Press.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hy-
brid planning for partially hierarchical domains. In AAAI-
98.
Kambhampati, S. 1995. A comparative analysis of partial
order planning and task reduction planning. SIGART Bul-
letin, Special Section on Evaluating Plans, Planners and
Planning agents 6(1).
Lent, M. V., and Laird, J. 1999. Learning hierarchical per-
formance knowledge by observation. In In Proc. 16th Int.
Conf. on Machine Learning, 229–238. Morgan Kaufmann.
Long, D., and Fox, M. 2000. Automatic synthesis and use
of generic types in planning. In Proceedings of AIPS 2000,
196–205.
McCluskey, T. L.; Liu, D.; and Simpson, R. M. 2003.
GIPO II: HTN planning in a tool-supported knowledge en-
gineering environment. In Proc. of ICAPS-03.
Minton, S. 1990. Selectively generalizing plans for
problem-solving. In Hendler, J. A.; Allen, J.; and Tate, A.,
eds., Readings in planning, Representation and Reasoning.
San Mateo, CA: Morgan Kaufmann. chapter 9, 651–654.
Nau, D. S.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An htn plan-
ning system. Journal of Artificial Intelligence Research
20:379–404.
Wilkins, D. E. 1988. Practical Planning: Extending the

Classical AI Planning Paradigm. San Mateo, CA: Morgan
Kaufmann.
Xu, K., and Muñoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain
theories. In AAAI, 234–240.


