
Dynamic Floating-Point Cancellation Detection

Michael O. Lam
Department of Computer Science

University of Maryland, College Park
Email: lam@cs.umd.edu

April 20, 2010

Abstract

Floating-point rounding error is a well-known problem in numerical computation that distorts results
and is difficult to analyze accurately. We propose a tool that performs automatic binary instrumentation
of floating-point code to detect cancellations and to run side-by-side calculations in alternate precisions.
The results of this analysis can help developers find areas of their code that are causing a loss of precision.
In the future, it will also point out where reduced precision could be used to achieve a faster running time
without losing accuracy. In this paper we explain the techniques and present several results, focusing on
cancellation detection.

1 Introduction

The finite precision and roundoff error of floating-point representations have caused headaches for computa-
tional scientists since the early days of computing. There are methods for estimating the error of numerical
algorithms, but they require extensive training to use correctly and often yield error bounds that are too
pessimistic. The more common approach to detecting floating-point error is to re-run a program on a repre-
sentative data set using a higher precision to see if the results are significantly different. This can be painful
to do manually, especially if the programmer must modify the source code extensively. With GPUs and
other stream-based architectures, where single-precision computations are significantly faster than the cor-
responding double-precision computations, there is strong motivation to reduce precision wherever possible.
Likewise (and on all computers), single precision numbers require less space. Saving space can allow more
values to be stored in a given cache size and reduce memory bandwidth requirements.

We propose a framework for automatic binary instrumentation of floating-point programs with two
primary goals: 1) the detection of significant digit cancellation events, and 2) execution with alternate
precisions. The former uses a straightforward examination of the values involved in addition and subtraction
operations. The latter uses shadow-value analysis, a technique that performs side-by-side computations for
every floating-point instruction in the original program. We have implemented a prototype of such a system
using the DyninstAPI instrumentation toolkit. We believe our tool is useful to floating-point code developers
who do not have the skills or time required to do a full manual analysis of their code. Using our tool, they can
automatically obtain a comprehensive report on the cancellations detected during their program’s execution.
Since our tool operates on binaries instead of source code, developers can also run the same analyses on
third-party libraries without the need for source code. In this paper we present a description of our methods
and preliminary examples of results obtained using our prototype. Our initial work focuses primarily on the
detection of cancellations.

1



2 Related Work

There is a large body of work on general error analysis in the areas of numerical analysis and scientific
computing. In practice, there have been several major approaches to dealing with roundoff error. The first
is to simply ignore it. In many engineering applications, the measurement error far exceeds any roundoff
error. Thus, the standard double precision provided by current computers is usually sufficient.

The second approach is to try to quantify the error of a set of calculations a priori. Usually this involves
characterizing the error of each operation and then somehow combining them. There are two complementary
approaches: forward and backward analysis. Forward error analysis begins at the input and examines how
errors are magnified by each operation. Interval arithmetic is a variation on forward error analysis that
represents each number as a worst-case range of possible values, performing all calculations on these ranges
instead of individual numbers. The ranges inevitably expand as the calculations proceeded, and the range
for a final answer can be quite large. Since the average-case error is rarely as bad as the worst-case, this
kind of analysis is usually of little value. Backward error analysis is a separate approach that starts with
the computed answer and determines the exact input that would produce it; this “fake” input can then be
compared to the real input to see how different they are.

Numerical analysts have performed these types of analyses on many algorithms (see [15, 8, 10, 9] for
examples), but it is usually a difficult and tedious process. An automated solution would help considerably.

One approach to automatic error analysis is to manually insert error-tracking statements in computer
code [16, 7]. This augmented code calculates the error associated with the result at any given point in the
calculation, maintaining it through all calculations and producing it as output along with the final result.
This approach works, but is tedious and error-prone for several reasons. First, developers have to work
with a numerical analyst to determine the correct error formulas. Second, if the developers ever decide to
change any part of the computation, they have to ensure that they also update every corresponding error
calculation. Finally, running the code without the overhead requires manually removing the tracking code.

More recently, static program analysis has provided another way to conduct error analysis [12, 6, 13, 14].
This approach characterizes the error of mathematical operations using a set of static inference rules, allowing
a compile-time analysis to determine the worst-case precision of a final result. The advantage of this approach
is that it is fully automatic. Unfortunately, it suffers from the same problem as forward error analysis; it is
not data-sensitive, which means that it cannot determine when an algorithm is ill-conditioned on one input
set but not another. Because it is not a runtime analysis, it also cannot detect cancellation events.

FloatWatch [4] is a dynamic instrumentation approach that uses the Valgrind tool to monitor the mini-
mum and maximum values that each memory location holds during the course of execution. While this kind
of analysis reports metadata about range, it does not analyze cancellation events or do full shadow value
calculations at alternate precisions.

3 Methods

Our approach uses injected binary instrumentation to perform dynamic analysis of floating-point code. This
analysis is automated, does not require source code, and is data-sensitive. There is of course a performance
penalty, but we believe this can be mitigated in the future by optimization and tuning. Currently, we have
implemented a cancellation detector, and we are working on a shadow value analysis engine that will allow
developers to automatically run their programs in an alterate precison.

We use the DyninstAPI library [5] to insert the instrumentation. DyninstAPI supports doing this in
both online and offline modes. In the online mode, the tool starts the target process, pauses it, inserts
instrumentation, and then resumes the process. In the offline mode, the tool opens the target executable,
inserts instrumentation, and saves the resulting file back to disk. The resulting binary can be run identically
to the original program. DyninstAPI inserts instrumentation using a trampoline-based approach, which
replaces a section of executable code with a call to a trampoline, a newly-allocated area of code which
contains the original (now relocated) instructions as well as the desired instrumentation code. Our tool

2



augments floating-point instructions with calls to analysis routines in a dynamically-linked shared library.
We use the XED instruction decoder from the Intel Pin toolkit to parse floating-point instructions [11, 2].

3.1 Cancellation Detection

Currently, our main type of analysis detects and reports cancellation events. To do this, we instrument every
floating-point addition and subtraction operation, augmenting it with code that retrieves the operand values
at runtime. Our algorithm compares the binary exponents of the operands (exp1 and exp2) as well as the
result (expr). If the exponent of the result is smaller than the maximum of those of the two operands (i.e.
expr < max(exp1, exp2)), cancellation has occurred. We define the priority as max(exp1, exp2) − expr, a
measure of the severity of a cancellation. The analysis will ignore any cancellations under a given minimum
threshold. Unless otherwise noted, we used a threshold of ten bits (approximately three decimal digits) for
the results in this paper. If the analysis determines that the cancellation should be reported, it saves an
entry to a log file. This entry contains information about the instruction, the operands, and the current
execution stack. Obviously, the stack trace results will be more informative if the original executable was
compiled with debug information, but this is not necessary. The analysis also maintains basic instruction
execution counters for the instrumented instructions.

Since many programs produce thousands or millions of cancellations, it is impractical (and unhelpful) to
report the details of every single one. Instead, we use a sample-based approach. Unfortunately, there is a large
discrepancy between the number of cancellations at various instructions. In the same run, some instructions
may produce fewer than ten cancellations while others produce millions. Thus, a uniform sampling strategy
will not work. We have implemented a logarithmic sampling strategy. In our tool, the first ten cancellations
for each instruction are reported, then every tenth cancellation of the next thousand, then every hundred
thousandth cancellation thereafter. We found that this strategy produces an amount of output that is both
useful and manageable. We emphasize that all cancellations are counted and that the sampling applies only
to the logging of detailed information such as operand values and stack traces.

3.2 Visualization

We have also created a log viewer that provides a easy-to-use interface for exploring the results of an analysis
run. This viewer shows all events detected during program execution with their associated messages and
stack traces. It also aggregates count and cancellation results by instruction into a single table.

The viewer also synthesizes various results to produce new statistics. Along with the raw execution and
cancellation information, it also calculates the cancellation ratio for each instruction, which is defined as the
number of cancellations divided by the number of executions. This gives an indication of how cancellation-
prone a particular instruction is. The viewer also calculates the average priority (number of canceled bits)
across all cancellations for each instruction. This gives an indication of how severe the cancellations induced
by that instruction were.

4 Experiments

In this section we present several example uses of our tool to demonstrate its capabilities, usefulness, and
overhead. We did all of the experiments on a single 32-bit Linux workstation with quad-core Intel x86
processors, 4GB RAM, and a network-mounted hard drive.

4.1 Simple Cancellation

Our first test case is a simple example of cancellation. This sort of example is well-known to numerical
analysts, and there are many workarounds. Here it serves as an introductory demonstration of our tool.

y = 1− cos x

x2
(1)

3



Figure 1: Graphs of Equation 1: 1a at normal zoom and 1b zoomed to the area of interest.

Fig. 1a shows the graphical representation of the function given in Equation 1. This function is undefined
at x = 0 since this triggers a division by zero, but as it approaches that point the function value gets infinitely
close to 1/2. In floating point, the subtraction operation in the numerator results in cancellation around
x = 0 because cos 0 = 1. This cancellation causes the divergent behavior shown in Fig. 1b. Note that
the jagged appearance of the divergence is a result of the discretization of the cosine function near machine
epsilon. The preferred way to avoid this behavior is to rewrite the function to avoid the cancellation. In this
case, trigonometric identities allow it to be written to use the sine function, which does not suffer from the
same cancellation issues at x = 0.

We wrote a simple program that evaluates this function at several points approaching x = 0 from both
sides, and ran our cancellation detector on it. The tool reported all the cancellation events we expected. The
output log included details about the instruction, the operands, and the number of binary digits canceled.
Fig. 2 shows a screenshot of the log viewer interface. The lower portion displays all events logged during
execution. Each event is displayed in the list in the lower-left corner, along with summary information
about the event. Clicking on an individual event reveals additional information in the lower-right corner and
also loads the source code in the top window if the debug information and the source files are available. If
possible, the tool also highlights the source line containing the selected instruction. The tab selector in the
middle allows access to other information, such as a view of cancellations aggregated by instruction, and a
list of shadow value analysis results.

This simple example confirmed our expectations and demonstrates how our tool works. The highlighted
message reveals a 51-bit cancellation in the subtraction operation on line 19 of catastrophic.c. The two
operands involved were two XMM registers with values that were both very close to 1.0 (the first was exact
and the second diverged around the sixteenth decimal digit). Selecting the other events reveals similar details
for those cancellations. Being able to examine cancellation at this level of detail is valuable in analyzing
the numerical stability of a floating-point program. In this case, it alerts us that that the results of the
subtraction operation on line 19 may cause a cancellation of many digits. Since the resulting value is later
used on the same line to scale another value, we may deduce that this code needs to be rewritten to avoid
the loss of significant digits.

4.2 Approximate Nearest Neighbor

To investigate the ability of our tool to detect change in the cancellation behavior of a program based on input
data, we examined an approximate nearest-neighbor software library called ANN [3]. This computational
geometry library takes as inputs 1) a series of data points and 2) a series of query points. The software then
finds the nearest data point neighbor (by Euclidean distance) to each query point using an approximate

4



Figure 2: Sample log viewer results

5



Name Count Cancel
lbm 170X 290X
milc 220X 310X
namd 280X 420X
povray 120X 180X
soplex 20X 20X

Figure 3: Analysis overheads on selected SPEC benchmarks for instruction count (“Count”) and cancellation
detection (“Cancel”).

algorithm. This program is of interest to researchers in high-performance computing (HPC) as well as
computational geometry. Algorithms like ANN are often used in HPC for auto-tuning, image processing
(classification and pattern recognition), and DNA sequencing.

We ran this program instrumented with our cancellation analysis twice with different sets of points. Each
set included 500,000 data points and 5,000 query points. The first data set was composed of points randomly
generated uniformly throughout the square defined by x- and y-coordinate ranges of [−1, 1]. The second data
set was composed of points randomly generated very close to the same square (i.e. most x- and y-coordinates
were nearly identical, and close to either −1 or 1). The expectation was that the second input would lead to
many more cancellations for certain instructions in the distance calculation, since the coordinates are much
closer.

This expectation was confirmed. The first data set caused cancellation in less than 1% of the executions
of the instructions of interest, and the average number of canceled bits was less than 15. The second data
set caused cancellations in 100% of the executions for the same instructions, and the average number of
canceled bits was 46. This shows that the tool can expose differences in floating-point error on the same
code resulting from varying data sets, something that static analysis techniques cannot do.

4.3 SPEC Benchmarks

To demonstrate our tool’s ability to handle larger programs, we also ran it on the SPEC CPU2006 benchmark
suite [1]. We then ran our cancellation detection analysis using the provided “test” data sets. We used these
smaller sets so that we could complete the analyses in a reasonable amount of time. We expect that the
results for the larger data sets will be comparable. The instrumented benchmarks experienced a 100-500X
overhead, which is large but not impractical. Fig. 3 shows specific overheads on selected benchmarks.

The most common result was that most cancellations occurred in a few of the floating-point instructions:
usually fewer than twenty instructions. Often, there were several instructions that caused cancellations 100%
of the time. Without domain-specific knowledge, it is difficult to know whether these cancellations indicate
a larger problem in the code. We are currently investigating whether these cancellations are significant.

Another interesting discovery was a section in the “povray” (ray-tracer) benchmark where there is can-
cellation in a color calculation. In this routine, given values were subtracted from 1.0 to give percentage
components in red, green, and blue. Thus, complete cancellation in all three variables indicates the color
black.

5 Discussion

Our approach has several advantages. It is automatic, making it easy for programmers to evaluate their
software as they develop and test it. Since our analysis operates on compiled binaries rather than source
code or an intermediate representation, we include all effects resulting from compiler optimizations, and we
can provide results for closed-source shared libraries. In addition, the tool provides data-sensitive results,
meaning that our tool can help reveal data sets for which a particular algorithm is ill-conditioned. Finally,
since DyninstAPI supports a wide variety of platforms, our tool works on any platform that DyninstAPI

6



supports. This currently includes Linux on x86/AMD64, Itanium, or PowerPC (32- and 64-bit), as well as
Sparc on Solaris, Windows on x86, and AIX on PowerPC (32- and 64-bit).

The significant disadvantage of our approach is the added overhead. We believe that this overhead can
be reduced by streamlining our instrumentation and by performing data flow analysis to reduce the number
of instructions that need to be instrumented. Another disadvantage is that our tool requires a data set to
produce results; this disadvantage is inherent to our runtime-based approach.

6 Future Work

A short term area of future work is to study the appropriate threshold value for our priority parameter. Based
on our study of Gaussian elimination, it appears that a tool that automatically runs a program several times
with different threshold values would be useful.

A long term area of future work is to add shadow value analysis, which will permit alternate-precision
floating-point instructions to execute alongside the original program. Shadow value analysis creates a map-
ping between registers and memory locations that hold floating-point values and corresponding shadow value
entries. These shadow values can contain alternate precisions and are updated every time a floating-point
operation occurs. For example, if two floating-point numbers are added, then the corresponding shadow
values are added (in the alternate precision). After the program finishes, the analysis outputs all or part of
the shadow value table, reporting both shadow and actual values as well as the difference between them.

Shadow value analysis requires substantially more complex instrumentation than cancellation detection.
First, it requires specialized handling of nearly all floating-point instructions, rather than a small subset as
with cancellation detection. Second, the analysis must follow values through all data movement operations,
even when the movement is performed by non-floating-point instructions (integer moves, memcpy, etc.). We
plan to add support to our instrumentation system soon to provide these features.

7 Conclusion

We have developed a runtime cancellation detector and demonstrated that it works on small, medium, and
large examples. It is automatic and provides data-sensitive cancellation results. We believe it is already a
useful tool for code developers. We envision this tool as the first component of a complete suite of tools for
dynamically analyzing floating-point rounding error and for isolating problems detected.

Acknowledgements

This work supported in part by DOE grants DE-CFC02-01ER25489, DE-FG02-01ER25510 and DE-FC02-
06ER25763.

References

[1] Spec cpu2006 benchmark. http://www.spec.org/cpu2006/. accessed 23 february 2010.

[2] X86 encoder decoder. http://rogue.colorado.edu/pin/docs/20751/ xed/html/main.html. accessed 5 de-
cember 2008.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approxi-
mate nearest neighbor searching. J. ACM, 45:891–923, 1998. (doi: 10.1145/293347.293348).

[4] A. Brown, P. Kelly, and W. Luk. Profiling floating point value ranges for reconfigurable implementation.
2007.

7



[5] B. Buck and J. K. Hollingsworth. An api for runtime code patching. The International Journal of High
Performance Computing Applications, 14:317–329, 2000.

[6] S. P. Eric Goubault, Matthieu Martel. Asserting the precision of floating-point computations: A simple
abstract interpreter. Programming Languages and Systems, pages 287–306, 2002.

[7] W. Kahan. Pracniques: further remarks on reducing truncation errors. Commun. ACM, 8(1):40, 1965.

[8] T. Kaneko and B. Liu. On local roundoff errors in floating-point arithmetic. J. ACM, 20(3):391–398,
1973.

[9] W. Kraemer. A priori worst case error bounds for floating-point computations. IEEE transactions on
computers, 47(7):750–756.

[10] T. I. Laakso and L. B. Jackson. Bounds for floating-point roundoff noise. IEEE transactions on circuits
and systems, 41(6):424–426, 1994.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: building customized program analysis tools with dynamic instrumentation. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementa-
tion, pages 190–200, New York, NY, USA, 2005. ACM.

[12] M. Martel. Propagation of roundoff errors in finite precision computations: A semantics approach.
Programming Languages and Systems, pages 159–186, 2002.

[13] M. Martel. Semantics-based transformation of arithmetic expressions. Static Analysis, pages 298–314,
2007.

[14] M. Martel. Program transformation for numerical precision. In PEPM ’09: Proceedings of the 2009
ACM SIGPLAN workshop on Partial evaluation and program manipulation, pages 101–110, New York,
NY, USA, 2009. ACM.

[15] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Inc., 1964.

[16] J. H. Wilkinson. Error analysis revisited. IMA Bulletin, 22(11/12):192–200, 1986.

8


