Construction of Composite Numbers by Recursively Exponential Numbers

SZE, Tsz Wo

November 23, 2005

1 Introduction

In this paper, we give some constructions of composite numbers N, such that every number less than or equal to M divides N. Therefore,

$$
\operatorname{lcm}(1,2,3, \cdots, M) \mid N
$$

We call such numbers divisible up to M.

Definition 1.1. An integer N is divisible up to M if $n \mid N$ for all $0<n \leq M$.

A trivial construction is $N=M$!. However, it requires an enumeration of all prime numbers less than or equal to M. The constructions given in this paper do not require such enumeration.

In section 2, we present a family of constructions of the composite number $D_{r, k}$, where $D_{r, k}$ is divisible up to $2^{k-1}-1$ for any positive integer r. The factoring problem is discussed in section 3 . The problem of computing $D_{r, k} \bmod$ n is closely related to the factoring problem. They are probably equivalent.

2 Numbers of the form $r^{E}-E$, where $E=r^{r}$

Let $r \in \mathbb{N}=\{1,2, \cdots\}$. Define recursively exponential numbers, $E_{r, k}$, to be

$$
\begin{align*}
E_{r,-1} & =0, \tag{2.1}\\
E_{r, k} & =r^{E_{r, k-1}} \quad \text { for } k \geq 0 . \tag{2.2}
\end{align*}
$$

Let $D_{r, k}$ be the difference between $E_{r, k}$ and $E_{r, k-1}$, i.e.

$$
\begin{equation*}
D_{r, k}=E_{r, k}-E_{r, k-1} \quad \text { for } k \geq 0 \tag{2.3}
\end{equation*}
$$

$D_{r, k}$ can be evaluated by the recursive equation below.

$$
\begin{equation*}
D_{r, k}=E_{r, k-1}\left(r^{D_{r, k-1}}-1\right) \quad \text { for } k \geq 0 \tag{2.4}
\end{equation*}
$$

Table 2.1 shows some values of $E_{r, k}$ and $D_{r, k} . \quad E_{r, k}$ and $D_{r, k}$ grow repidly. Obviously, $E_{r, k}$ divides $E_{r, k+1}$ for $k \geq 1$. The divisibe relationship also holds for $D_{r, k}$. We have the following proposition.

k	$E_{2, k}$	$D_{2, k}$	$E_{3, k}$	$D_{3, k}$	\cdots	$E_{r, k}$	$D_{r, k}$
0	1	1	1	1	\cdots	1	1
1	2	1	3	2	\cdots	r	$r-1$
2	4	2	27	24	\cdots	r^{r}	$r^{r}-r$
3	16	12	7625597484987	7625597484960	\cdots	$r^{r^{r}}$	$r^{r^{r}}-r^{r}$

Table 2.1: Examples of $E_{r, k}$ and $D_{r, k}$

Proposition 2.1. For $r>1$ and $0 \leq a<b$,

$$
\begin{equation*}
D_{r, a} \mid D_{r, b} \tag{2.5}
\end{equation*}
$$

Proof. It is enough to show $D_{r, k} \mid D_{r, k+1}$ for $k \geq 0$. Then, the theorem follows.
We show it by induction. $D_{r, 0}=1$ divides $D_{r, 1}=r-1$. Assume $D_{r, k-1} \mid D_{r, k}$. For $k>0$, let $D_{r, k}=n D_{r, k-1}$ for some integer n. By equation 2.4,

$$
\begin{aligned}
D_{r, k+1} & =E_{r, k}\left(r^{D_{r, k}}-1\right) \\
& =E_{r, k}\left(r^{n D_{r, k-1}}-1\right) \\
& =E_{r, k}\left(r^{D_{r, k-1}}-1\right)\left(r^{(n-1) D_{r, k-1}}+r^{(n-2) D_{r, k-1}}+\cdots+1\right) .
\end{aligned}
$$

Obviously, $E_{r, k-1} \mid E_{r, k}$. Therefore, $D_{r, k}=E_{r, k-1}\left(r^{D_{r, k-1}}-1\right)$ divides $D_{r, k+1}$.

The next proposition helps to show $D_{r, k}$ is divisible up to $2^{m}-1$ for some m in later sections. The Euler's totient function is denoted by $\phi(n)$, which is the number of positive numbers less than or equal to n and prime to $n . \operatorname{ord}_{n}(r)$ denotes the order of r in the ring \mathbb{Z}_{n}.

Proposition 2.2. Let $r>1$ be an integer. Suppose the following hypotheses.
(i) 6 divides $D_{r, b}$ for some $b \geq 2$.
(ii) If, for some $k \geq 2$, every k-bit integer divides $D_{r, b+k-2}$, then $\phi(a)$ divides $D_{r, b+k-2}$ for $2^{k} \leq a<2^{k+1}$ with $\operatorname{gcd}(r, a)=1$,

Then, for any $n \in \mathbb{N}$, if $n<2^{m}$, then $n \mid D_{r, b+m-2}$.
Proof. Let $n=\prod_{i=0}^{l} p_{i}^{e_{i}}$ be a factorization of n, where p_{i} are distinct primes. Consider the case that all p_{i} divides r. $\sum_{i=0}^{l} e_{i}<m$ since $n<2^{m}$. Then, $n \mid r^{m-1}$. It is clear that $r^{m-1} \mid E_{r, m-1}$. With equation (2.4), $n \mid D_{r, m}$. By proposition 2.1, $n \mid D_{r, b+m-2}$.

The other case is proven by induction. For $m=2,6$ divides $D_{r, b}$ by hypothesis (i). The theorem is true for $m=2$. Assume all k-bit numbers divide $D_{r, b+k-2}$ for some $k \geq 2$. Since $D_{r, b+k-2} \mid D_{r, b+k-1}$ by proposition 2.1, it is enough to show $n \mid D_{r, b+k-1}$ for $2^{k} \leq n<2^{k+1}$.

If $\operatorname{gcd}(r, n)>1$, write $n=s t$, such that $\operatorname{gcd}(r, t)=1, t>1$ and each prime factor of s divides r. $s>1$ implies $t<2^{k}$. Similarly, $t>1$ implies $s<2^{k}$. Then, $s \mid D_{r, b+k-2}$ and $t \mid D_{r, b+k-2}$ by induction assumption. $\operatorname{gcd}(s, t)=1$ implies $s t \mid D_{r, b+k-2}$. Therefore, $n \mid D_{r, b+k-1}$ by proposition 2.1.

For the case that $\operatorname{gcd}(r, n)=1, \phi(n) \mid D_{r, b+k-2}$ by hypothesis (ii). We have $\operatorname{ord}_{n}(r) \mid \phi(n)$ as a consequence of Lagrange's theorem. Together with the fact $n \mid\left(r^{\operatorname{ord}_{n}(r)}\right)^{c}-1$ for any positive integer c, we have n divides $E_{r, b+k-2}\left(r^{D_{r, b+k-2}-}\right.$ 1) $=D_{r, b+k-1}$.

2.1 The case $r=2$

In this section, $E_{2, k}=\underbrace{2^{2}}_{k}$ is denoted by E_{k} and $D_{2, k}=E_{k}-E_{k-1}$ is denoted by D_{k}. The sequences $\left\{E_{k}\right\}_{k}$ and $\left\{D_{k}\right\}_{k}$ are known as Sloane's A14221 and A038081 [4]. D_{k} also is the number of rooted identity trees of height k and the number of sets of rank k.

2.1.1 Ackermann function

E_{k} and D_{k} can be evaluated by Ackermann function. Ackermann function $A(m, n)$ is defined by

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } n>0\end{cases}
$$

It can be shown that $A(4, n)=\underbrace{2^{2}}_{n+3}-3$. Therefore, for $k \geq 4$,

$$
\begin{align*}
E_{k} & =A(4, k-3)+3 \tag{2.6}\\
D_{k} & =A(4, k-3)-A(4, k-4) . \tag{2.7}
\end{align*}
$$

2.1.2 Divisibility of D_{m}

D_{m+1} is divisible up to $2^{m}-1$, which is a special case of theorem 2.8. In other words, all m-bit positive integers divide D_{m+1}. The table below shows the factorization of D_{m} for the first few cases. It is clear that the factorization of D_{m} contains all primes up to $2^{m-1}-1$.

m	E_{m}	D_{m}	Factorization of D_{m}
0	1	1	1
1	2	1	1
2	4	2	2
3	16	12	$2^{2} \cdot 3$
4	65536	65520	$2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$
5	2^{65536}	$2^{65536}-65536$	$2^{16} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13^{2} \cdot 17 \cdot 19 \cdot 29 \cdot 31$ $\cdot 37 \cdot 41 \cdot 43 \cdot 53 \cdot 61 \cdot 71 \cdot 73 \cdot 79 \cdot 97 \cdots$

Table 2.2: Factorization of D_{m}

The factorization of D_{5} almost contains all the primes up to $2^{5}=32$. Only 23 is missing. The reason is that we have

$$
\begin{aligned}
\operatorname{ord}_{23}(2) & =11 \\
\operatorname{ord}_{11}(2) & =10 \\
\operatorname{ord}_{5}(2) & =4
\end{aligned}
$$

In order to have $23\left|D_{m}, 23\right| 2^{D_{m-1}}-1$ by equation 2.4 , which implies $11 \mid D_{m-1}$. Similarly, $11 \mid 2^{D_{m-2}}-1$ by equation 2.4. Then, $10 \mid D_{m-2}$. $10=2 \cdot 5 \mathrm{im}-$ plies $2 \mid E_{m-3}$ and $5 \mid 2^{D_{m-3}}-1$. Then, $4 \mid D_{m-3}$, which implies $4 \mid E_{m-4}$ and $m-4 \geq 2$. Therefore, $m \geq 6$.

2.1.3 Sophie-Germain primes

A positive integer p is a Sophie-Germain prime if both p and $2 p+1$ are primes. Since $\operatorname{ord}_{2 p+1}(2) \neq 2$ for Sophie-Germain prime $p, \operatorname{ord}_{2 p+1}(2)=p \operatorname{or}_{\operatorname{ord}_{2 p+1}}(2)=$ $2 p$. If $p \nmid D_{k}, 2 p+1 \nmid 2^{D_{k}}-1$, which implies $2 p+1 \nmid D_{k+1}$. This idea is used to prove theorem 2.4 below.

Definition 2.3. A sequence of primes, $p_{1}, p_{2}, \cdots, p_{n}$, is called a Sophie-Germain chain if $p_{k+1}=2 p_{k}+1$ for $k=1,2, \cdots, n-1$.

Theorem 2.4. Let $p_{1}, p_{2}, \cdots, p_{n}$ be a Sophie-Germain chain. For $m>2$, $p_{1} \mid D_{m}$ if and only if $p_{n} \mid D_{m+n-1}$.

Proof. It is enough to show the case $n=2$. Then, the theorem follows by induction.

It is obvious that $4 \mid D_{m}$ for $m>2$. If $p_{1} \mid D_{m}, D_{m}=2 p_{1} t$ for some integer t. Then,

$$
\begin{aligned}
D_{m+1} & =E_{m}\left(2^{D_{m}}-1\right) \\
& =E_{m}\left(2^{2 p_{1} t}-1\right) \\
& =E_{m}\left(2^{2 p_{1}}-1\right)\left(2^{2 p_{1}(t-1)}+2^{2 p_{1}(t-2)}+\cdots+1\right) .
\end{aligned}
$$

$\operatorname{ord}_{p_{2}}(2)$ divides $\phi\left(p_{2}\right)=2 p_{1}$. Therefore, $2^{2 p_{1}} \equiv 1\left(\bmod p_{2}\right)$ and $p_{2} \mid D_{m+1}$.
If $p_{2} \mid D_{m+1}$, then $p_{2} \mid 2^{D_{m}}-1$. $\operatorname{ord}_{p_{2}}(2)$ divides D_{m}. For being a SophieGermain chain, $p_{2} \geq 5 . \operatorname{ord}_{p_{2}}(2)>2$ since $2^{2}=4<5$. $\operatorname{ord}_{p_{2}}(2)$ divides $\phi\left(p_{2}\right)=2 p_{1}$. Then, p_{1} divides $\operatorname{ord}_{p_{2}}(2)$. Hence, p_{1} divides D_{m}.

Remark: The theorem does not apply to the case $m=2$. It is because $D_{2}=2$, which cannot be written as $2 p_{1} t$ when $p_{1}=2$.

For example, the sequence $5,11,23$ is a Sophie-Germain chain. $5 \nmid D_{3}$ implies $23 \backslash D_{5}$ by theorem 2.4.

2.2 Divisibility of $D_{r, m}$ with r odd

In this section, we consider $D_{r, k}$ for positive odd r. If $r=1, D_{1, k}=0$ for all $k>0$. It is a degenerate case. Table 2.3 and 2.4 show the factorizations of some $D_{3, k}$ and $D_{5, k}$. Note that all 2-bit numbers divide both $D_{3,2}$ and $D_{5,2}$, all 3-bit numbers divide both $D_{3,3}$ and $D_{5,3}$. For $D_{5,3}$, even all 4-bit numbers divide it.

k	$E_{3, k}$	$D_{3, k}$	Factorization of $D_{3, k}$
0	1	1	1
1	3	2	2
2	27	24	$2^{3} \cdot 3$
3	7625597484987	7625597484960	$2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 41 \cdot 73 \cdot 6481$

Table 2.3: Factorization of $D_{3, k}$

k	$E_{5, k}$	$D_{5, k}$	Factorization of $D_{5, k}$
0	1	1	1
1	5	4	2^{2}
2	3125	3120	$2^{4} \cdot 3 \cdot 5 \cdot 13$
3	5^{3125}	$5^{3125}-3125$	$2^{6} \cdot 3^{2} \cdot 5^{5} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 31 \cdot 41 \cdots$

Table 2.4: Factorization of $D_{5, k}$

The results given in this section usually are one step better than the case of r even. It is because $D_{r, 1}=r-1$ is even, which provides 2 as a factor for the later values in the sequence. We show a divisibility theorem which tells that $D_{r, m}$ is divisible up to $2^{m}-1$. Before presenting the theorem, we show there are enough factors of 2 in each $D_{r, m}$.

Proposition 2.5. For r odd, $r>1$ and $m>0$, if $2^{k} \mid D_{r, m}$, then $2^{k+2} \mid D_{r, m+1}$.
Proof. Since $D_{r, m} \mid D_{r, m+1}$ by proposition 2.1, the statement is equivalent to

$$
4 D_{r, m} \text { divides } D_{r, m+1} \text { for } m>0
$$

We prove it by induction.
For the base case, if $r \equiv 1(\bmod 4), 4$ divides $r-1=D_{r, 1}$. Then $4 D_{r, 0}=4$ divides $D_{r, 1}$. If $r \equiv 3(\bmod 4), D_{r, 1}=r-1 \equiv 2(\bmod 4)$ and

$$
\begin{aligned}
D_{r, 2} & =r\left(r^{r-1}-1\right) \\
& \equiv r\left(r^{\frac{r-1}{2}}-1\right)\left(r^{\frac{r-1}{2}}+1\right) \\
& \equiv 0 \quad(\bmod 8)
\end{aligned}
$$

Therefore, $4 D_{r, 1}$ divides $D_{r, 2}$.
Assume $4 D_{r, m-1}$ divides $D_{r, m}$ for some $m>1$. Write $D_{r, m}=2^{k} t$ with t odd and $k \geq 2 . E_{r, m-1}\left(r^{D_{r, m-1}}-1\right)=D_{r, m} \equiv 0\left(\bmod 2^{k}\right)$. Since $E_{r, m-1}$ is odd, $r^{D_{r, m-1}} \equiv s 2^{k}+1\left(\bmod 2^{k+2}\right)$, where $s=0,1,2$ or 3 .

$$
\begin{aligned}
r^{4 D_{r, m-1}} & \equiv\left(s 2^{k}+1\right)^{4} \\
& \equiv s^{4} 2^{4 k}+4 s^{3} 2^{3 k}+6 s^{2} 2^{2 k}+4 s 2^{k}+1 \\
& \equiv 1\left(\bmod 2^{k+2}\right)
\end{aligned}
$$

Then, $D_{r, m+1}=E_{r, m}\left(r^{D_{r, m}}-1\right) \equiv 0\left(\bmod 2^{k+2}\right)$.
Corollary 2.6. For $r>1$ and $k>0$, if $r \equiv 1(\bmod 4), 2^{2 k} \mid D_{r, k}$. For $r \equiv 3$ $(\bmod 4), 2^{2 k-1} \mid D_{r, k}$.

Proof. We prove it by induction. $4 \mid r-1$ if $r \equiv 1(\bmod 4) .2 \mid r-1$ if $r \equiv 3$ $(\bmod 4)$. The base cases are true. The induction step follows from proposition 2.5.

Theorem 2.7. Let r be a positive odd integer. For any $n \in \mathbb{N}$, if $n<2^{m}$, then $n \mid D_{r, m}$.

Proof. We prove it by showing it satisfies all the hypotheses in proposition 2.2 for $b=2$. Then, the theorem follows.

For hypothesis (i), $D_{r, 2}=r\left(r^{r-1}-1\right)$ is divisible by 2 since $r^{r-1}-1$ is divisible by 2 . If $r \equiv 0(\bmod 3), 3 \mid D_{r, 2}$. Otherwise, $\operatorname{ord}_{3}(r)=1 \operatorname{or~}_{\operatorname{ord}_{3}}(r)=2$ imply $\operatorname{ord}_{3}(r) \mid r-1$, which further implies $3 \mid r^{r-1}-1$. Therefore, 6 divides $D_{r, 2}$.

For hypothesis (ii), if a is even, $\phi(a) \leq \frac{a}{2}<2^{k}$, then $\phi(a) \mid D_{r, k}$ by the assumption given in (ii). For odd $a, \phi(a)=2^{u} v$ with $0<u \leq k, v$ odd and $v<2^{k} .2^{u} \mid D_{r, k}$ since $2^{k} \mid D_{r, k}$ by corollary 2.6. $v \mid D_{r, k}$ by the assumption in (ii). Therefore, $\phi(a)$ divides $D_{r, k}$.

2.3 Divisibility of $D_{r, m}$ with r even

In this section, we prove the divisibility theorem when r is even. Table 2.5 and 2.6 show some factorizations of $D_{4, k}$ and $D_{6, k}$. Note that $D_{r, 1}=r-1$ must be odd. For $r>2,2$ is not the smallest prime dividing the first $D_{r, k}>1$. We show $D_{r, m}$ is divisible up to $2^{m}-1$. Like the proof of theorem 2.7 , we prove the hypotheses of proposition 2.2 for $b=3$ can be satisfied.

k	$E_{4, k}$	$D_{4, k}$	Factorization of $D_{4, k}$
0	1	1	1
1	4	3	3
2	256	252	$2^{2} \cdot 3^{2} \cdot 7$
3	4^{256}	$4^{256}-256$	$2^{8} \cdot 3^{3} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37 \cdot 43 \cdot 73 \cdots$

Table 2.5: Factorization of $D_{4, k}$

k	$E_{6, k}$	$D_{6, k}$	Factorization of $D_{6, k}$
0	1	1	1
1	6	5	5
2	46656	46650	$2 \cdot 3 \cdot 5^{2} \cdot 311$
3	6^{46656}	$6^{46656}-46656$	$2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 31 \cdot 43 \cdot 101 \cdots$

Table 2.6: Factorization of $D_{6, k}$

Theorem 2.8. Let $r>2$ be a even integer. For any $n \in \mathbb{N}$, if $n<2^{m}$, then $n \mid D_{r, m+1}$.

Proof. For hypothesis (i), $D_{r, 3}=r^{r}\left(r^{r^{r}-r}-1\right) .2 \mid D_{r, 3}$ since r is even. If $r \equiv 0$ $(\bmod 3), 3 \mid r^{r}$. Otherwise, $r^{2} \equiv 1(\bmod 3)$. Then, $\left(r^{2}\right)^{\frac{r}{2}\left(r^{r-1}-1\right)} \equiv 1(\bmod 3)$ and $3 \mid r^{r^{r}-r}-1$. Therefore, $3 \mid D_{r, 3}$.

For hypothesis (ii), a is odd since r is even. $\phi(a)=2^{u} v$ with $0<u \leq k$, v odd and $v<2^{k} .2^{u} \mid D_{r, k+1}$ since, obviously, $2^{k}\left|D_{r, k+1} \cdot v\right| D_{r, k+1}$ by the assumption in hypothesis (ii). Therefore, $\phi(n)$ divides $D_{r, k+1}$.

The theorem follows from proposition 2.2 with $b=3$.

2.4 Convergence of $r^{r^{r^{*}}}(\bmod p)$

In [3], Ng showed by p-adic valuation that, for any prime p and any positive integer $r, \lim _{k \rightarrow \infty} E_{r, k}(\bmod p)$ exists. We use a different technique to prove a more general result, $\lim _{k \rightarrow \infty} E_{r, k}(\bmod n)$ exists for any $n>1$, and even evaluate the limit. We begin with a unified version of the divisibility theorem. Then, we show that $E_{r, k}(\bmod n)$ stabilizes for large k. At last, the limit is evaluated.

Theorem 2.9. Let n be a positive integer with $n<2^{m}$. Then, $n \mid D_{r, m+1}$ for any positive integer r.

Proof. For $r=1$, it is trivial. For the other cases, it follows by theorem 2.7 and 2.8.

Proposition 2.10. Let n be an integer with $1<n<2^{m}$ and r be a positive integer. Then, for any $k \geq m$,

$$
\begin{equation*}
E_{r, k} \equiv E_{r, m} \quad(\bmod n) \tag{2.8}
\end{equation*}
$$

Proof. n divides $D_{r, m+1}$ by theorem 2.9. Then, by proposition 2.1, n divides $D_{r, j}$ for $j>m+1$. Hence, we have $E_{r, k}=\sum_{j=m+2}^{k} D_{r, j}+E_{r, m+1} \equiv E_{r, m+1}$ $(\bmod n)$. The proposition follows.

Theorem 2.11. Let n be an integer with $1<n<2^{m}$ and r be a positive integer.

$$
\begin{equation*}
\lim _{k \rightarrow \infty} E_{r, k} \equiv E_{r, m} \quad(\bmod n) \tag{2.9}
\end{equation*}
$$

Proof. For $h \geq 0, E_{r, m+h} \equiv E_{r, m}(\bmod n)$ by proposition 2.10. Then,

$$
\lim _{k \rightarrow \infty} E_{r, k}=\lim _{h \rightarrow \infty} E_{r, m+h} \equiv \lim _{h \rightarrow \infty} E_{r, m}=E_{r, m} \quad(\bmod n)
$$

We will discuss how to compute $E_{r, m}(\bmod n)$ in section 3.1.

2.5 Partitionings of prime numbers

For $k>0$, define subsets of prime numbers

$$
\begin{equation*}
\mathcal{P}_{r, k}=\left\{p: p \text { prime, } p \mid D_{r, k} \text { and } p \nmid D_{r, k-1}\right\} . \tag{2.10}
\end{equation*}
$$

Then, for $r>0, \mathcal{P}_{r, 1}, \mathcal{P}_{r, 2}, \mathcal{P}_{r, 3}, \cdots$ is a partitioning of all prime numbers. With Birkhoff and Vandiver's theorem (proposition 2.12), we can show $\mathcal{P}_{r, k}$ is nonempty for $r>1$ and $k>0$, except the trivial case $\mathcal{P}_{2,1}$. Hence, we have a non-empty partitioning of primes for each $r>2$.

Proposition 2.12. Let $V_{n}=a^{n}-b^{n}$ for some integers a, b with $a>b>0$ and $\operatorname{gcd}(a, b)=1$. If $n \neq 2$ and $V_{n} \neq 2^{6}-1^{6}$, then there exists a prime p, such that $p \mid V_{n}$ and $\operatorname{gcd}\left(p, V_{d}\right)=1$ for all $d \mid n$ and $d<n$.

See [1] for the proof of proposition 2.12.

Theorem 2.13. $\left\{\mathcal{P}_{2, k}\right\}_{k>1}$ and $\left\{\mathcal{P}_{r, k}\right\}_{k>0}$ for $r>2$ are non-empty partitionings of primes.

Proof. For any $r>1$ and any prime p with $p<2^{m}, p$ does not divide $D_{r, 0}=1$ and p divides $D_{r, m+1}$ by theorem 2.9. Therefore, $p \in \mathcal{P}_{r, k}$ for some $0<k \leq$ $m+1$. Since $D_{r, a} \mid D_{r, b}$ for all $a<b$ by proposition 2.1, $p \notin \mathcal{P}_{r, h}$ for $h \neq k$. Therefore, $\left\{\mathcal{P}_{r, k}\right\}_{k>0}$ is a partitioning of primes.

$$
\begin{aligned}
\mathcal{P}_{2,2}= & \{2\} \text { and } \mathcal{P}_{2,3}=\{3\} \text { are non-empty. Let } \\
& I=\left\{(r, k) \in \mathbb{N}^{2}: k>3 \text { if } r=2 \text { and } k>1, \text { otherwise. }\right\} .
\end{aligned}
$$

We show $\mathcal{P}_{r, k}$ is non-empty for $(r, k) \in I$. For any $r>1$ and $k>1, D_{r, k-1} \neq 2$. For $k>3, D_{2, k-1} \neq 6$. By propostion 2.12, for $(r, k) \in I$, there exists a prime q, such that $q \mid r^{D_{r, k-1}}-1^{D_{r, k-1}}$ and $q \nmid r^{d}-1^{d}$ for $d \mid D_{r, k-1}$ and $d<D_{r, k-1}$. $D_{r, k-2} \mid D_{r, k-1}$ and $D_{r, k-2}<D_{r, k-1}$ imply $q \nmid r^{D_{r, k-2}-1^{D_{r, k-2}} . q \nmid E_{r, k-2}}$ since $q \mid r^{D_{r, k-1}}-1$. Therefore, q divides $D_{r, k}=E_{r, k-1}\left(r^{D_{r, k-1}}-1^{D_{r, k-1}}\right)$, but not $D_{r, k-1}=E_{r, k-2}\left(r^{D_{r, k-2}}-1^{D_{r, k-2}}\right) . \mathcal{P}_{r, k}$ is non-empty.

2.5.1 Height function

It is natural to ask that given $r>1$ and a prime p, how to find k, such that $p \in \mathcal{P}_{r, k}$? i.e. which partition p belongs to?

Definition 2.14. For $r>1$, define the height function,

$$
\begin{equation*}
h_{r}: \mathbb{P} \rightarrow \mathbb{N}, \quad p \mapsto k, \tag{2.11}
\end{equation*}
$$

such that $p \in \mathcal{P}_{r, k}$, where \mathbb{P} is the set of primes.

The problem is equivalent to finding the minimum k, such that p divides $D_{r, k}$ because $p \nmid D_{r, j}$ for $j<h_{r}(p)$ and $p \mid D_{r, j}$ for $j \geq h_{r}(p)$. Definition 2.14 can be extended to any $n>1$ as below.

Definition 2.15. For $r>1$, define the height function,

$$
\begin{equation*}
h_{r}: \mathbb{N} \backslash\{1\} \rightarrow \mathbb{N}, \quad n \mapsto k, \tag{2.12}
\end{equation*}
$$

such that $n \mid D_{r, k}$ and $n \backslash D_{r, k-1}$.
Suppose $n<2^{m} . h_{r}(n)$ can be computed by a binary search algorithm since $h_{r}(n) \leq m+1$ by theorem 2.9.

```
Algorithm 2.16. heightByBinarySearch(r,n)
{
    set lower = 0;
    set upper = m+1;
    while true
    {
        if upper - lower = 1, return upper;
        set mid = = 1
        if n| D Dr,mid
            upper = mid;
        else
        lower = mid;
    }
}
```

The number of loops required before returning is $O(\log \log p)$. However, $p \mid D_{r, j}$ may not be determined efficiently for $j \leq m$ because $D_{r, j}$ can be much larger than p. We present another algorithm, heightByOrd, which does not query whether $p \mid D_{r, j}$, except for small j. From the example at the end of section 2.1.2, it suggests the following algorithm.

```
Algorithm 2.17. heightByOrd(r,n)
{
    if n | D Dr,1
    if n| D Dr,2}\mathrm{ , return 2;
    write n=st for s,t\geq1, each prime divisor of s divides r and gcd}(r,t)=1
    find a=min {j:s|E Er,j};
    find }d=\mp@subsup{\operatorname{ord}}{t}{(}(r)\mathrm{ ;
    return max( }a\mathrm{ , heightByOrd (r,d) +1);
}
```

The number of recursion steps in heightByOrd is $O\left(h_{r}(n)\right)$. Since $h_{r}(n)<$ $\log _{2} n+2$ by theorem 2.9, the number of recursions is $O(\log n)$.

The algorithm requires computing $\operatorname{ord}_{t}(r)$, where $\operatorname{ord}_{t}(r)$ can be computed efficiently if the factorization of t can be computed efficiently. We will further discuss the factoring problem in section 3.

3 Factoring

We show that the factoring problem, denoted by FACTOR, is closely related to the problem of computing $D_{r, k} \bmod n$, where the operation, $\bmod n$, returns the remainder of $D_{r, k}$ divided by n, which is a non-negative integer less than n. These two problems are probably equivalent. Thoughout this section, n is an m-bit number greater than 1 .

3.1 Computing $D_{r, k} \bmod n$

Computing $D_{r, k} \bmod n$ in general is difficult since $D_{r, k}$ can be huge for $k \in$ $O(\log n)$. The problem of computing $D_{r, k} \bmod n$ is denoted by DMod and, similarly, the problem of computing $E_{r, k} \bmod n$ is denoted by EMod. We only consider $1<r<n<2^{m}$ and $k \geq 0$. We first show that DMOD and EMOD are polynomial-time equivalent. Then, we present an algorithm for EMOD.

Proposition 3.1. DMOD and EMOD are polynomial-time, in $\log n$, equivalent.
Proof. Given an algorithm solving EMod, DMod can be solved by,

$$
D_{r, k} \bmod n=\left(\left(E_{r, k} \bmod n\right)-\left(E_{r, k-1} \bmod n\right)\right) \bmod n .
$$

On the other hand, given an algorithm solving DMod, EMod can be solved as following. If $k<m+1$,

$$
\begin{equation*}
E_{r, k} \bmod n=\left(\sum_{j=0}^{k}\left(D_{r, j} \bmod n\right)\right) \bmod n \tag{3.13}
\end{equation*}
$$

Otherwise, $k \geq m+1$, by proposition 2.10 ,

$$
E_{r, k} \bmod n=E_{r, m} \bmod n
$$

which can be computed by equation (3.13).
Obviously, both transformations require $O(\log n)$ steps.

Algorithm 3.2. $\operatorname{EMod}(r, k, n)$

$\{$
if $k \geq m+1$, return $\operatorname{EMod}(r, m, n)$;
write $n=s t$ for $s, t \geq 1$, each prime divisor of s divides r and $\operatorname{gcd}(r, t)=1$; if $t=1$, return $E_{r, k} \bmod s$;
set $d=\operatorname{ord}_{t}(r)$;
set $h=\operatorname{EMod}(r, k-1, d)$;
return $\left(s^{-1} r^{h} \bmod t\right) s$;
\}

Computing $\operatorname{ord}_{t}(r)$ turns out to require factoring t. For $E_{r, k} \bmod s$, if k is small, it can be computed directly, otherwise, $E_{r, k} \bmod s=0$. All other steps can be computed efficiently.

3.2 A factoring algorithm

We present a deterministic algorithm for factoring n, where n is a composite, m-bit number.

```
Algorithm 3.3. factor( }n\mathrm{ )
{
    for r=2 to \lfloor\sqrt{}{n}\rfloor+1
    for }k=1\mathrm{ to }
    {
        set h= D (r,k}\operatorname{mod}n\mathrm{ ;
        set d= gcd}(h,n)\mathrm{ ;
        if d\not=1 and d\not=n
            return d;
    }
}
```

Proposition 3.4. Let p, q be distinct prime factors of n. If there exists $r_{0} \leq$ $\lfloor\sqrt{n}\rfloor+1$, such that $h_{r_{0}}(p)<h_{r_{0}}(q)$, then factor returns at $r \leq r_{0}$.

Proof. Note that $D_{r, k} \bmod n=0$ for $k>m$ by theorem 2.9. Therefore, $h_{r_{0}}(q) \leq$ m. Let $k_{0}=h_{r_{0}}(p) . D_{r_{0}, k_{0}}=p t$ for some integer $t . \operatorname{gcd}(q, t)=1$ since $q \nmid D_{r_{0}, k_{0}}$. Then, $D_{r_{0}, k_{0}} \bmod n=p s$ for some integer s with $\operatorname{gcd}(q, s)=1$. Therefore, $\operatorname{gcd}\left(D_{r_{0}, k_{0}}, n\right)$ is not equal to 1 or n. The algorithm returns at $r \leq r_{0}$.

Proposition 3.5. If n is composite, factor (n) returns a non-trivial factor of n.
Proof. Clearly, if factor returns, it returns a non-trivial divisor of n. There exists a prime p, such that $p \mid n$ and $p<\lfloor\sqrt{n}\rfloor+1$. Let $r_{0}=p+1$ and $k_{0}=1$. Then, $D_{r_{0}, k_{0}}=p$. factor returns at $r \leq r_{0}$.

Suppose $n=p q$, where p, q are distinct primes with $p<q$. factor is not an interesting algorithm if it returns at $r=p+1$, since a naive factoring algorithm, which checks each prime for divisor of n in ascending order, has similar property. We hope that there is an r in $O(\log n)$, such that factor returns. It is the case if conjecture 3.6 below is ture. As a consequence, FActor and DMod are polynomial-time equivalent.

For example, in The New RSA Factoring Challenge [2], RSA-160 $=P Q$, where

$$
\begin{aligned}
P= & 4542789285848139407168619064973883165613714577846979 \\
& 3250959984709250004157335359 \\
Q= & 4738809060383201619663383230378895197326892292104095 \\
& 7944741354648812028493909367 .
\end{aligned}
$$

We have $h_{2}(P)=12$ and $h_{2}(Q)=11$. Therefore, factor will return Q, although $Q>P$, when $r=2$ and $k=11$ in algorithm 3.3.

Conjecture 3.6. For any distinct primes p, q, there exists an r in $O(\log p+$ $\log q)$, such that $h_{r}(p) \neq h_{r}(q)$.

Theorem 3.7. If conjecture 3.6 is true, FACTOR and DMOD are polynomialtime, in $\log n$, equivalent.

Proof. Given an algorithm solving DMoD in polynomial-time, algorithm 3.3 solves Factor in polynomial-time if conjecture 3.6 is true.

On the other hand, given an algorithm solving FACTOR in polynomial-time, algorithm 3.2 solves EMOD in polynomial-time. By proposition 3.1, DMOD can be solved in polynomial-time.

References

[1] G. D. Birkhoff and H.S. Vandiver. On the integral divisors of $a^{n}-b^{n}$. The Annals of Mathematics, 5(4):173-180, July 1904.
[2] RSA Security Inc. The new rsa factoring challenge. RSA-160 is factored! (http://www.rsasecurity.com/rsalabs/node.asp?id=2097), 2003.
[3] L. L. Ng. A problem in p-adics, 1989.
[4] N. J. A. Sloane. Sequences a038081 and a014221. The On-Line Encyclopedia of Integer Sequences (http://www.research.att.com/~njas/sequences/Seis.html).

