
Complete Fairness in Multi-Party Computation

Without an Honest Majority

Samuel Dov Gordon∗

Abstract

A well-known result of Cleve shows that complete fairness is impossible, in general, without
an honest majority. Somewhat surprisingly, Gordon et al. recently showed that certain (non-
trivial) functions can be computed with complete fairness in the two-party setting. Motivated
by their result, we show here the first completely-fair protocols (for non-trivial functions) in
the multi-party setting. Specifically, we show that boolean OR can be computed fairly for any
number of parties n, and that voting can be computed fairly for n = 3 (in each case, we tolerate
an arbitrary number of corruptions). Our protocol for voting requires ω(log k) rounds, where k
is the security parameter, and we prove this is optimal if complete fairness is desired.

1 Introduction

In the setting of secure computation, a set of parties wish to run a protocol for computing some
function of their inputs while preserving, to the extent possible, security properties such as privacy,
correctness, input independence and others. These requirements are formalized by comparing a
real-world execution of the protocol to an ideal world where there is a trusted entity who performs
the computation on behalf of the parties. Informally, a protocol is “secure” if for any real-world
adversary A there exists a corresponding ideal-world adversary S (corrupting the same parties
as A) such that the result of executing the protocol in the real world with A is computationally
indistinguishable from the result of computing the function in the ideal world with S.

One desirable property is fairness which, intuitively, means that either everyone receives the
output, or no one receives the output. Unfortunately, it has been shown by Cleve [4] that complete
fairness is impossible in general when a majority of parties is not honest. Until recently, it was
thought that no non-trivial functions could be computed with complete fairness without an honest
majority. A recent result of Gordon et al. [10], however, shows that this perception is wrong, at
least in the two-party setting, and forces a re-evaluation of our current understanding of fairness.

Gordon et al. [10] deal exclusively with the case of two-party computation and leave open the
question of fairness in the multi-party setting. Extending their work, we initiate a study of fairness
in the setting of n > 2 parties, and demonstrate the first completely-fair protocols (for non-trivial
functionalities) tolerating any t < n corrupted players. We stress that we are interested in obtaining
complete fairness for certain functionalities, exactly as in the case of an honest majority. This is
in contrast to work aimed at achieving weaker notions of partial fairness [5, 9, 2, 14, 7] (but for all
functionalities). Our results assume the existence of a broadcast channel (or, equivalently, a PKI).

∗Dept. of Computer Science, University of Maryland. Email: {gordon}@cs.umd.edu.

1



Although one could meaningfully ask what can be achieved in the absence of broadcast, we have
chosen to assume broadcast so as to separate questions of fairness from questions of agreement.

Our first result shows that fairness can be obtained for some non-trivial functions for an arbitrary
number of players n. Specifically, we show:

Theorem (Under suitable cryptographic assumptions) for any number of parties n there exists an
O(n)-round protocol for securely computing boolean OR with complete fairness.

We stress that OR is a non-trivial function; in particular, Kilian et al. [12] show that OR is
complete in the sense that black-box access to the OR functionality is sufficient for the secure
computation of any other functionality (without complete fairness).

For our next result, we turn to a specific function of interest: boolean voting (or, equivalently,
the majority function). Here, we are able to show a positive result only for the case n = 3:

Theorem (Under suitable cryptographic assumptions) there exists a protocol for securely computing
the majority function for n = 3 with complete fairness.

Ishai et al. [11] also present a protocol for computing the voting functionality (for any n) without
an honest majority. Their protocol, however, achieves only a weak notion of security when an
honest majority is not present. (Indeed, their goal was to present a protocol that achieves the
standard notion of security when an honest majority is present, and achieves some meaningful
notion of security when this is not the case.) Specifically, when t parties are corrupted they can
prove, informally, that a real execution of the protocol is as secure as an execution in the ideal
world when the adversary is allowed to query the ideal functionality t + 1 times. We refer to their
work for further explanation.

Our protocol for voting requires ω(log k) rounds, where k is the security parameter. Our final
result shows that this is, in fact, optimal.

Theorem Any protocol for securely computing the majority function for n = 3 with complete
fairness requires ω(log k) rounds.

1.1 Outline of the Paper

Standard notions of security for secure multi-party computation are reviewed in Appendix A. We
stress that although the definitions are standard, what is non-standard is that we consider the
definition of completely-fair secure computation even when we do not have an honest majority.
We will refer to the weaker security definition, where dishonest parties are allowed to abort the
computation even in the ideal world, as security with abort. When considering protocols that
are secure with abort, will we assume that malicious parties can cause an abort only if P1 is
malicious [8].

In Section 2 we describe our feasibility result for the case of boolean OR, and in Section 3 we
show our protocol for computing the 3-party voting functionality. Our lower bound on the number
of rounds required for completely-fair computing of voting is described in Section 4. Due to space
limitations, most of the proofs have been deferred to the appendices.

2 Fair Computation of the OR Function for n Players

In this section we provide a protocol for securely computing the OR functionality with complete
fairness for n parties, any t < n of whom may be corrupted. The basic idea behind the protocol is

2



Protocol Π1

Inputs: Let the inputs to OR be x1, . . . , xn, where xi ∈ {0, 1}
Computation:

1. Let P be the set of all players.
2. Each player Pi chooses random coins ri and uses a computationally-hiding commitment scheme

to compute and broadcast ci = Com(xi, ri). If some Pi does not broadcast anything, all honest
players output 1. Otherwise, let ~c = (c1, . . . , cn).

3. All players Pi ∈ P run an ideal computation (with abort) for ORWithVerify, where party Pi

uses (ri, xi,~c) as its input.
4. Let P ∈ P be the player with the lowest index in P. If players receive ⊥ from the execution

of ORWithVerify, they set P = P \ {P} and return to step 3.a

5. If players receive a set I of faulty players from the execution of ORWithVerify, they set P = P\I
and return to step 3.

6. If players receive a binary output from the execution of ORWithVerify, they output this value
and end the protocol.

aRecall we assume that only the player with the lowest index can abort.

Figure 1: Functionality OR for n players

to have the parties securely compute OR with abort, and then recover in case an abort occurs. The
key observation is that the dishonest players only learn something from this computation if they all
hold input 0, since if any of the malicious players hold input 1 then they trivially know the result
in advance. Therefore, if P1 is corrupt and chooses to abort after receiving the output (but before
allowing the honest parties to receive output)1, the honest parties can safely assume that his input
is 0. They then exclude P1 and restart the computation of OR with abort without him, which is
equivalent (with respect to the output) to substituting a 0 for his input. The protocol is presented
in Figure 1.

One technical detail that needs to be addressed in the above description is how we ensure
that the malicious parties use the same inputs every time they restart the computation of OR with
abort. To force this behavior, we begin the protocol by having every party broadcast a commitment
to their input bit. Then, instead of computing a simple OR with abort, the parties compute the
functionality ORWithVerify, described in 2. This functionality computes OR, but only after checking
that all parties are still using the input values they originally committed to. To achieve this, in
addition to providing their original inputs (and random coins), each party will also provide the list
of commitments that they originally received from other players. If all players participate correctly,
then all inputs will result in exactly those commitments. However, if any two parties disagree on
the original commitments, or if any player’s input does not result in the expected commitment, the
functionality returns a list of all discrepancies, and the honest parties will discover a set of dishonest
parties. They then restart the computation without those parties, which, again, is equivalent to
substituting a 0 for their inputs. We proceed to give the formal statement and proof of our theorem.

Theorem 1 Assume Com is a computationally-hiding commitment scheme, and that π securely
computes ORWithVerify with abort. Then protocol Π1 computes OR with complete fairness.

1Recall that we are using the convention that only P1 can instruct the trusted party to abort after receiving
output. We refer the reader to Appendix A.3 for more details.

3



ORWithVerify

Inputs: Let the input of player Pi be (xi, ri,~ci) where ~ci = (ci,1, . . . , ci,`).
For each party Pj, determine its output as follows:

1. Say Pi is inconsistent with Pj if either (1) ~ci 6= ~cj or (2) Com(xi, ri) 6= cj,i. (Note that this is
not a symmetric relation.)

2. Let Ij be the set of parties inconsistent with Pj .
3. If there exist any parties inconsistent with each other, return Ij as output to Pj . Otherwise,

return
∨

i xi to all parties.

Figure 2: Functionality ORWithVerify for n players

Proof: For any non-uniform, polynomial time adversary A in the hybrid world, we demonstrate
a non-uniform polynomial-time adversary S corrupting the same parties as A and running in the
ideal world with access to an ideal functionality computing OR (with complete fairness), such that{

idealOR,S(x1, . . . xn)
}

xi∈{0,1}
c≡

{
hybridORWithVerify

Π1,A (x1, . . . , xn)
}

xi∈{0,1}
.

For simplicity we assume Com is perfectly binding, though statistical binding suffices.

1. Initialize I to be the set of corrupted player, and let H = P \ I denote the honest players.
For Pj ∈ H, the simulator S creates a commitment cj to a random bit, and broadcasts cj to
the corrupted parties. S then records the commitment ci broadcast by each corrupted Pi. If
any corrupted player fails to broadcast a value ci, then S submits 1’s to the trusted party on
behalf of all corrupted parties, and outputs whatever A outputs.

2. If I = ∅ then S submits 0’s to the trusted party on behalf of all corrupted parties. Otherwise,
S continues.

3. All players in I provide values (x̂i, r̂i,~c
′) for an ideal computation of ORWithVerify. If S

receives a binary output from ORWithVerify, it continues with Step 4. Otherwise, let P ∈ H∪I
be the player with the lowest index in H∪I, and let I ′ be the list of malicious players output
by ORWithVerify:

(a) lf P ∈ I, the list I ′ is given to P . If P aborts, S sets I = I \ {P}. If P does not abort,
then S sets I = I \ I ′. In both cases, S returns to Step 2.

(b) if P /∈ I, S sets I = I \ I ′ and repeats step 2.

4. S computes the value b =
∨

Pi∈I xi .

(a) If b = 0, S submits all 0’s to the trusted party for OR on behalf of A. Denote by bout

the output of the trusted party. S gives bout to A and outputs what A outputs.

(b) if b = 1, S gives the value 1 to A without querying the trusted party. If P /∈ I, or
if P does not choose to abort, then S submits all 1s to the trusted party and outputs
whatever A outputs. If P ∈ I and P aborts, S sets I = I \ {P} and returns to step 2.

4



3 Fair Computation of Voting for Three Players

Players first compute the secure computation (with abort) that is described in ShareGen. This
execution results in each player obtaining shares of a three-way secret sharing of three different bit
sequences: (b(1)

1 , . . . , b
(m)
1 ), (b(1)

2 , . . . , b
(m)
2 ) and (b(1)

3 , . . . , b
(m)
3 ). The value b

(i)
1 is the bit that players

P2 and P3 should output if P1, aborts in round i+1. b
(i)
2 and b

(i)
3 are defined symmetrically. In the

second part of the protocol, after these shares have been distributed, the players simultaneously
broadcast their shares as follows. In round i, P1 broadcasts its share of b

(i)
1 , P2 broadcasts its

share of b
(i)
2 and P3 broadcasts its share of b

(i)
3 . In other words, in round i party Pj sends a share

of the value that the other parties should output if he ceases to participate in the next round.
Notice that if all (or even just two) parties are honest, nobody can reconstruct any of the b

(i)
j

values upon receiving Pj ’s share in round i. If Pj does not send a valid, signed message in round
i + 1, only then the other two players, who we refer to as Pj+1 and Pj−1, exchange their own
shares of b

(i)
j , and, using the share received from Pj in the prior round, they reconstruct b

(i)
j and

output the resulting bit. If all players act honestly, then in the final round they jointly reconstruct
b
(m)
1 = b

(m)
2 = b

(m)
3 = Majority(x1, x2, x3).

A few subtleties arise. One is that we must ensure that the values of b
(1)
j , . . . , b

(m)
j are all outputs

that are consistent with the inputs of Pj−1 and Pj+1. In particular, if Pj−1 and Pj+1 have the same
input value, then all values of b

(i)
j must be equal to this value. For example, we cannot allow it to

occur (due to the correctness requirement) that when both of their inputs are 0, and Pj aborts,
they output 1. We provide the details of how these values are determined in protocoI ShareGen.
Another difficult arises in the case that two parties are corrupted. Say, players Pj−1 and Pj+1 are
both controlled by a malicious adversary, then the adversary will learn each value of b

(i)
j in round i.

To ensure that this extra information is unhelpful, we use the approach taken in [10]. A round i∗

is randomly selected according to a geometric distribution with parameter α = 1/5, and the value
of i∗ is kept hidden from the participants. In rounds i < i∗ the values of b

(i)
j reveal no information:

they provide output that uses a randomly chosen input for player Pj . In round i ≥ i∗, the b
(i)
j will

reveal the correct output. As we will demonstrate below, the biggest difficulty in proving security
will be handling an adversary that happens to abort exactly in round i∗: this adversary will learn
the correct output in round i∗, and then abort before the honest party learns the same value. The
security of the protocol will rely on the fact that it is difficult for such an adversary to consistently
and correctly identify round i∗.

Theorem 2 Assume that (SigGen,Sig,Vrfy) is a secure digital signature scheme, and that π se-
curely computes ShareGen with abort. Then Protocol Π2, with α = 1/5, securely computes Majority
with complete fairness.

Proof: Note first that the protocol yields the correct output of f when all players are honest.
This is because, with all but negligible probability, i∗ ≤ m, and b

(m)
j = Majority(x1, x2, x3). Note

also that once the execution of ShareGen is complete, the rest of protocol Π2 is symmetric. We
refer the reader to [8] for more details, and simply note that protocols for secure computation with
abort exist in which only P1 has the ability to abort. Therefore, if P1 is honest, we are assured
that π completes successfully (though perhaps with substituted inputs for one or both of the other
players if they aborted during its execution). It suffices, then, to prove, without loss of generality,

5



ShareGen

Inputs: Let the inputs to ShareGen be x1, x2, x3 ∈ {0, 1}. (If one of the received inputs is not in
the correct domain, then a default value of 1 is used for that player.) The security parameter is k.
Computation:

1. Define values b
(1)
1 , . . . , b

(m)
1 , b

(1)
2 , . . . , b

(m)
2 and b

(1)
3 , . . . , b

(m)
3 in the following way:

• Choose i∗ according to a geometric distribution with parameter α (see text).

• For i = 0 to i∗ − 1 and j ∈ {1, 2, 3} do:

– Choose x̂j ← {0, 1} at random

– Set b
(i)
j = Majority(xj−1, x̂j , xj+1)

• For i = i∗ to m, and j ∈ {1, 2, 3} set b
(i)
j = Majority(x1, x2, x3).

2. For 0 ≤ i ≤ m, j ∈ {1, 2, 3}, choose b
(i)
j|1, b

(i)
j|2 and b

(i)
j|3 as random three-way shares of b

(i)
j .

(E.g., b
(i)
j|1 and b

(i)
j|2 are random and b

(i)
j|1 ⊕ b

(i)
j|2 ⊕ b

(i)
j|3 = b

(i)
j . For i = 0, we will always let the

share b
(0)
j|j = 0, and choose b

(0)
j|j−1 and b

(0)
j|j+1 at random such that b

(0)
j|j−1 ⊕ b

(0)
j|j+1 = b

(0)
j .)

3. Compute (pk, sk)← SigGen(1k). For 0 ≤ i ≤ m, and l, j ∈ {1, 2, 3}, let σ
(i)
l|j = Sigsk(i‖j‖b(i)

l|j ).

Output:

1. Send to Pj the values
{

(b(i)
1|j , σ

(i)
1|j), (b

(i)
2|j , σ

(i)
2|j), (b

(i)
3|j , σ

(i)
3|j)

}m

i=0
and public key pk.

Figure 3: Functionality ShareGen, parameterized by a value α.

that Π2 is secure when P1 alone is corrupt, and when both P1 and P2 are corrupted. The following
two claims and their proofs will therefore prove our theorem. In what follows, we drop the matter
of signatures to simplify reading. We assume that the simulator in both claims will send signed
messages and will verify received messages. When we say a corrupted player aborts, this includes
the case where he sends an incorrectly signed message.

Claim 1 For every non-uniform, polynomial-time adversary A corrupting P1 and running Π2 in
a hybrid model with access to an ideal functionality computing ShareGen (with abort), there exists
a non-uniform, polynomial-time adversary S corrupting P1 and running in the ideal world with
access to an ideal functionality computing f (with complete fairness), such that{

idealf,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N
c≡

{
hybridShareGen

Π2,A (x1, x2, x3, k)
}

xi∈{0,1},k∈N
.

Proof: The proof of Claim 1 is similar to and simpler than the proof of Claim 2 that follows.
We leave the proof of Claim 1 to Appendix B.

Claim 2 For every non-uniform, polynomial-time adversary A corrupting P1and P2 and running
Π2 in a hybrid model with access to an ideal functionality computing ShareGen (with abort), and one
computing OR without abort, there exists a non-uniform, polynomial-time adversary S corrupting
P1 and P2 and running in the ideal world with access to an ideal functionality computing f (with
complete fairness), such that{

idealf,S(x1, x2, x3, k)
}

xi∈{0,1},k∈N
c≡

{
hybridShareGen

Π2,A (x1, x2, x3, k)
}

xi∈{0,1},k∈N
.

6



Protocol Π2

Inputs: Party Pi has input xi ∈ {0, 1}. The security parameter is k.
The protocol:

1. Preliminary phase:
Parties P1, P2 and P3 run an ideal execution with abort for ShareGen, where P1 can abort if he
is malicious. Each player uses their respective inputs, x1, x2 and x3, and security parameter k.
z

(a) If players receive ⊥, P1 is “blamed” (see text), and P2 and P3 run an ideal computation
with complete fairness for OR (see section 2). (Note that this is equivalent to using a
substituted input value of 1 for P1.) Otherwise:

(b) Denote the output of Pj from ShareGen by
{

(b(i)
1|j , σ

(i)
1|j), (b

(i)
2|j , σ

(i)
2|j), (b

(i)
3|j , σ

(i)
3|j)

}m

i=0
and

pk.

2. For i = 1, . . . , m − 1 do:

Player broadcast:

(a) All three players simultaneously broadcast: Pj sends (b(i)
j|j , σ

(i)
j|j)

(b) Players verify each others’ broadcasted shares using pk. Invalid signatures are treated
as though the sending party aborted the protocol.

(c) If (only) Pj failed to send a valid message:

i. Pj+1 and Pj−1 respectively broadcast their shares: (b(i−1)
j|j+1, σ

(i−1)
j|j+1) and

(b(i−1)
j|j−1, σ

(i−1)
j|j−1).

ii. Each player verifies that the message sent by the other is valid. Invalid messages are
treated as an abort. If one player aborts, the remaining honest player outputs their
own input value. Otherwise, Pj−1 and Pj+1 both output b

(i−1)
j = b

(i−1)
j|1 ⊕ b

(i−1)
j|2 ⊕

b
(i−1)
j|3 . (Recall that for the special case of i = 1, b

(0)
j|j = 0, so the two remaining

players can still reconstruct b
(0)
j .)

(d) If two players fail to send valid messages, the remaining honest player outputs its own
input value.

3. In round i = m do:

(a) All players send their shares (and signatures) of b
(m)
1 and verify as in step 2b. If Pj

aborts or sends a bad message, Pj−1 and Pj+1 proceed as in step 2c, and output the
resulting value. If two players abort, the remaining honest player outputs its input value
as in step 2d.

(b) If verification passes, all players output b
(m)
1 = Majority(x1, x2, x3) = b

(m)
1|1 ⊕ b

(m)
1|2 ⊕ b

(m)
1|3 .

Figure 4: Generic protocol for computing 3 party voting on 2 candidates.

Proof: The proof in this case is subtle, and the simulator S will be more complex than the one
described in Appendix B. The difficulty now is that P1 and P2 will learn the value of b

(i)
3 in round

i, which will yield some information about the input of P3. Note, very much like in the proof of
security found in [10], the complication arises because the adversary might abort in round i∗, after
learning the correct output, but before P3 has generated correct output. For ease of explanation in
what follows, we will sometimes refer to the actions or views of P1 and P2, when more formally we

7



mean the action of A on behalf of those parties.
By symmetry of the protocol, we will assume that P1 aborts before P2. To make this assumption,

we will have to consider inputs (x1, x2) = (0, 1) independently from inputs (x1, x2) = (1, 0). We
proceed with the description of S.

0. If in any of the following, S receives a forged signature from P1, S outputs fail and ends the
simulation.

1. S receives x′1 and x′2 from P1 and P2 respectively. If x′1 /∈ {0, 1} (resp. x′2 /∈ {0, 1}) S continues
the simulation setting x′1 = 1 (resp. x′2 = 1).

2. S runs (sk, pk)← SigGen(1k), generates random shares:(
(b(1)

1|1, b
(1)
2|1, b

(1)
3|1), (b

(1)
1|2, b

(1)
2|2, b

(1)
3|2), . . . , (b

(m)
1|1 , b

(m)
2|1 , b

(m)
3|1 ), (b(m)

1|2 , b
(m)
2|2 , b

(m)
3|2 )

)
and sends these and pk to A. If P1 aborts, then Sextracts x′′2 from P2, as intended for the
ideal OR functionality, and sends (1, x′′2) to the trusted party.

3. If P1 (and thus P2) has not yet aborted, S picks a value i∗ according to a geometric distribution
with parameter α = 1

5 . In what follows, for ease of description, we will use x1 and x2 when in
fact we mean x′1 and x′2, remembering, of course that A could have used substituted inputs.

4. For round i = 1, . . . , (i∗ − 1), S chooses a value for b
(i)
3 as follows:

(a) If x1 = x2 = 0, he chooses b
(i)
3 = 0

(b) If x1 = x2 = 1, he chooses b
(i)
3 = 1

(c) If x1 6= x2, he chooses b
(i)
3 =

{
0 with probability 1

2

1 with probability 1
2

He then sends b
(i)
3|3 to A such that b

(i)
3 = b

(i)
3|3 ⊕ b

(i)
3|1 ⊕ b

(i)
3|2.

For simplicity, from here forward, we will say that A received b in round i (or, equivalently
that S sent b) if b

(i)
3|3 ⊕ b

(i)
3|1 ⊕ b

(i)
3|2 = b

(i)
3 = b.

5. If P1 aborts in round i < i∗, then S sets x̂2 = x2, and assigns a value to x̂1 according to the
following rules that depend on the values of (x1, x2) and on the value of b

(i)
3 :

(a) If x1 = x2, then x̂1 = x1 with probability 3
8

(b) If x1 6= x2 and b
(i)
3 = x1 then x̂1 = x1 with probability 1

4

(c) If x1 6= x2 and b
(i)
3 = x2 then x̂1 = x1 with probability 1

2

Note that when x1 = x2, b
(i)
3 = x1. S now finishes the simulation as follows.

(d) If x̂1 6= x̂2, then S submits (x̂1, x̂2) to the trusted party. Denote the output it receives
from the trusted party by bout = f(x̂1, x̂2, x3). S set b

(i−1)
1 = bout, sends b

(i−1)
1 to P2,

and outputs whatever A outputs.

(e) If x̂1 = x̂2, then S sends bout = b
(i−1)
1 = x̂1 = x̂2 to P2 before sending anything to the

trusted party. If P2 aborts, it sends (0, 1) to the trusted party. Otherwise, it sends
(x̂1, x̂2) to the trusted party. In both cases it outputs whatever A outputs.

8



6. In round i∗:

(a) If x1 6= x2, S submits (x1, x2) to the trusted party. Denote the value he receives by
bout = f(x1, x2, x3).

(b) If x1 = x2, he simply sets bout = x1 = x2 without querying the trusted party and
continues (note that in this case, bout = f(x1, x2, x3) even though S did not query the
trusted party).

7. In rounds i∗, . . . ,m, S sends bout to A. If A aborts P1 and P2 simultaneously, S submits (1, 0)
to the trusted party (if he hasn’t already done so in step 6a). If A aborts P1 (alone), S sets
b
(i−1)
1 = bout and sends the final share, b

(i−1)
1|3 , to P2.

(a) If x1 6= x2, then S has already sent (x1, x2) to the trusted party. He simply outputs
whatever A outputs and ends the simulation.

(b) If x1 = x2, and P2 does not abort, S sends (x1, x2) to the trusted party. If P2 does
abort, S sends (0, 1) to the trusted party. In both cases he then outputs whatever A
outputs.

In the interest of saving space, we refer the reader to Appendix C for the analysis of S.

4 A Lower Bound on the Round Complexity of Voting

We prove here that any 3-party protocol for voting requiresω(log(n)) rounds. In our proof, we use a
constraint from the ideal world to demonstrate that the last round of the protocol is “unnecessary”.
We then apply the argument a logarithmic number of times to obtain a protocol that reveals
the correct output without any message exchange, yielding a contradiction. As we will see, the
argument cannot be applied more than a logarithmic number of times, so the proof will not rule
out polynomial-round protocols (such as the one demonstrated in Section 3).

The ideal world constraint that we use for our proof relates to an adversary’s ability with respect
to two different goals: guessing the honest party’s input, and biasing the output away from that
value. If an adversary that controls two parties submits inputs (0, 1) or (1, 0) to the trusted party,
he can guess the honest party’s input with probability 1, as the output in this case is always the
same as the honest input. However, for the same reason, the probability that he biases the output
away from the honest input is 0. If, on the other hand, the adversary submits (0, 0) or (1, 1), then
in interacting with an honest player that chooses input at random, he will bias the output against
the honest input with probability 1

2 . Now, however, he obtains no information about the honest
input, and the probability that he guesses its value is at most 1

2 . In both cases, the sum of these
probabilities is 1.

Under the assumption that a secure, completely fair, O(log k) round protocol for voting exists,
we demonstrate a real world adversary that either breaks the ideal world constraint mentioned
above (contradicting the assumption that the protocol is secure), or it allows us to prove that the
last message of the protocol is unnecessary. Before describing the adversary, we first reintroduce
some notation, and formalize the above mentioned constraints.

9



The notation is the same as that used in Section 3, but we review it here so that the section
is self-contained. We assume there exists a secure, completely fair 3-party protocol for voting, and
since much of our proof is symmetric (though not necessarily the protocol itself), we refer to the
players as Pj−1, Pj and Pj+1, each respectively holding inputs xj−1, xj and xj+1. Our proof then
will be applied for j ∈ {1, 2, 3}, where addition is modulo 3. We denote by b

(i)
j the value output by

Pj−1 and Pj+1 when the last message sent by Pj is in round i. Similarly, we denote by b
(i)
j−1 (resp.

b
(i)
j+1) the value output by Pj and Pj+1 (resp. Pj and Pj−1) when the last message sent by Pj−1

(resp. Pj+1) is in round i.

Theorem 3 Any protocol Π that securely computes Majority for three parties with complete fairness
requires r = ω(log k) rounds.

We begin the proof by demonstrating the following ideal world constraint.

Claim 3 For all j ∈ {1, 2, 3} and any ideal-world adversary A controlling parties Pj−1 and Pj+1

it holds that
Pr [A outputs xj ] + Pr [outputj 6= xj ] ≤ 1,

where the probabilities are taken over the random coins of A and random choice of xj ∈ {0, 1}.

Proof: We begin by letting equal be the event that an ideal-world adversary A submits two
equal inputs (i.e., xj−1 = xj+1) to the trusted party. It is easy to see that

Pr [A outputs xj ] ≤
1
2

Pr [equal] + Pr [equal] ,

since when equal occurs the adversary learns nothing about the value of xj . Also,

Pr [outputj 6= xj ] =
1
2

Pr [equal]

since the only way outputj 6= xj can occur is if A submits xj−1 = xj+1 = x̄j to the trusted party.
The claim is proved by summing these two probabilities:

Pr [A outputs xj ] + Pr [outputj 6= xj ]

≤ 1
2

Pr [equal] + Pr [equal] +
1
2

Pr [equal]

= Pr [equal] + Pr [equal] = 1.

This ideal-world constraint results in the following real-world constraint. For all j ∈ {1, 2, 3},
any inverse polynomial µ(n), and any adversary A controlling players Pj−1 and Pj+1

Pr [A outputs xj ] + Pr [outputj 6= xj ] ≤ 1 + µ(n) (1)

for n sufficiently large. Consider now the following real world adversary Ai running a completely-
fair, r(n)-round protocol for voting. Ai corrupts Pj−1 and Pj+1 (for any j ∈ {1, 2, 3}) and randomly
chooses inputs xj−1, xj+1 subject to the constraint xj−1 6= xj+1. Then:

10



• Ai runs the protocol honestly until he receives a round i message from player Pj (but does
not yet send any round i messages).

• Ai locally computes the value of b
(i)
j as though Pj aborted:

– If b
(i)
j = xj−1, Ai aborts Pj−1 without sending his round i message and continues the

protocol (honestly) on behalf of Pj+1 until the end. Note that Pj outputs b
(i−1)
j−1 .

– If b
(i)
j = xj+1, Ai aborts Pj+1 without sending his round i message and continues the

protocol (honestly) on behalf of Pj−1 until the end. Note that Pj outputs b
(i−1)
j+1 .

• Ai outputs b
(i)
j

We use this adversary and the constraint of Equation (1) to prove the following claim.

Claim 4 Fix µ and n such that Equation (1) holds, and let µ = µ(n). Say that there exists an i,
with 1 ≤ i ≤ r(n), such that for all j ∈ {1, 2, 3} and all inputs (xj−1, xj , xj+1) it holds that:

Pr
[
b
(i)
j = Majority(xj−1, xj , xj+1)

]
≥ 1− µ. (2)

Then for all j ∈ {1, 2, 3} and all inputs (xj−1, xj , xj+1) it holds that:

Pr
[
b
(i−1)
j = Majority(xj−1, xj , xj+1)

]
≥ 1− 5µ. (3)

Proof: We first note that when xj−1 = xj = xj+1, the claim follows trivially by the correctness
and fairness properties of the protocol. Pj−1 and Pj+1, for example, must output Majority regardless
of when Pj aborts. So we assume that some two inputs differ. Without loss of generality, we will
say that xj−1 6= xj+1. We begin by analyzing the probability that Ai outputs xj , as well as the
probability that Pj outputs x̄j . Recall that in the description of Ai, we state that Ai chooses
inputs xj−1 6= xj+1, which is also our assumption here. We leave that assumption implicit from
here forward.

Pr [Ai outputs xj ] = Pr
[
b
(i)
j = xj

]
= Pr

[
b
(i)
j = Majority(xj−1, xj , xj+1)

]
≥ 1− µ (4)

where the last equality holds because when xj−1 6= xj+1, xj = Majority(xj−1, xj , xj+1), and the
inequality follows from the assumption in our claim (equation 2). We now compute the probability
that Pj does not output its own vote, xj .

Pr [Pj outputs x̄j ]

=
(

1
2
· Pr [Pj outputs x̄j | xj−1 = xj ]

)
+

(
1
2
· Pr [Pj outputs x̄j | xj = xj+1]

)
=

1
2

(
Pr

[
b
(i−1)
j−1 = x̄j ∧ b

(i)
j = xj | xj−1 = xj

]
+ Pr

[
b
(i−1)
j+1 = x̄j ∧ b

(i)
j = x̄j | xj−1 = xj

]
+ Pr

[
b
(i−1)
j+1 = x̄j ∧ b

(i)
j = xj | xj = xj+1

]
+ Pr

[
b
(i−1)
j−1 = x̄j ∧ b

(i)
j = x̄j | xj = xj+1

])
(5)

11



From the constraint in equation 1, we know that the sum of equations 4 and 5 is bounded by 1+µ:

1 + µ ≥ 1− µ +
1
2

(
Pr

[
b
(i−1)
j−1 = x̄j ∧ b

(i)
j = xj | xj−1 = xj

]
+ Pr

[
b
(i−1)
j+1 = x̄j ∧ b

(i)
j = x̄j | xj−1 = xj

]
+ Pr

[
b
(i−1)
j+1 = x̄j ∧ b

(i)
j = xj | xj = xj+1

]
+ Pr

[
b
(i−1)
j−1 = x̄j ∧ b

(i)
j = x̄j | xj = xj+1

])
≥ 1− µ +

1
2

Pr
[
b
(i−1)
j−1 = x̄j ∧ b

(i)
j = xj | xj−1 = xj

]
≥ 1− µ +

1
2

(
1− Pr

[
b
(i−1)
j−1 = xj | xj−1 = xj

]
− Pr

[
b
(i)
j = x̄j | xj−1 = xj

])
≥ 1− µ +

1
2

(
1− Pr

[
b
(i−1)
j−1 = xj | xj−1 = xj

]
− µ

)
⇒ Pr

[
b
(i−1)
j−1 = xj = xj−1 | xj−1 = xj

]
≥ 1− 5µ. (6)

Furthermore, if xj = xj+1, then by correctness and fairness of the protocol, Pr
[
b
(i−1)
j−1 = xj+1 = xj

]
≥

1− µ for all i. Following the same argument as above, we also have:

1 + µ ≥ 1− µ +
1
2

(
1− Pr

[
b
(i−1)
j+1 = xj | xj = xj+1

]
− µ

)
⇒ Pr

[
b
(i−1)
j+1 = xj = xj+1 | xj = xj+1

]
≥ 1− 5µ, (7)

and when xj−1 = xj , we have by the correctness and fairness properties that

Pr
[
b
(i−1)
j+1 = xj−1 = xj

]
≥ 1− µ.

Therefore, under the assumption of Equation (2) and that xj−1 6= xj+1, regardless of the value of
xj , it follows that

Pr
[
b
(i−1)
j−1 = Majority(xj−1, xj , xj+1)

]
≥ 1− 5µ

Pr
[
b
(i−1)
j+1 = Majority(xj−1, xj , xj+1)

]
≥ 1− 5µ

It remains only to prove that

Pr
[
b
(i−1)
j = Majority(xj−1, xj , xj+1)

]
≥ 1− 5µ

To see this, note that if xj−1 6= xj+1, either xj−1 6= xj or xj+1 6= xj . In the first case, we can
redefine the adversary Ai to corrupt parties Pj−1 and Pj , and in the second case we redefine it to
corrupt Pj+1 and Pj . The rest of the argument is completely symmetric, and both cases leads to
the required conclusion. This completes the proof of the claim.

We now use Claim 2 to complete the proof of the theorem. Let p(n) = 5r(n), and µ(n) = 3/4p(n).
For sufficiently large n, by the assumed correctness of Π, Claim 2 holds when i = r(n). We
can therefore apply the claim r(n) times to conclude that for all inputs (xj−1, xj , xj+1), and all
j ∈ {1, 2, 3},

Pr
[
b
(0)
j = Majority(xj−1, xj , xj+1)

]
≥ 1− 5r(n)µ(n) = 3/4

which implies that for any inputs, any two players can correctly compute the correct output of Π
without ever interacting with the third player. This is clearly impossible, and we conclude that no
such protocol Π exists.

12



References

[1] D. Beaver. Foundations of secure interactive computing. In Feigenbaum [6], pages 377–391.

[2] D. Boneh and M. Naor. Timed commitments. In CRYPTO ’00: Proceedings of the 20th Annual
International Cryptology Conference on Advances in Cryptology, pages 236–254, London, UK,
2000. Springer-Verlag.

[3] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

[4] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In STOC, pages 364–369. ACM, 1986.

[5] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Com-
mun. ACM, 28(6):637–647, 1985.

[6] J. Feigenbaum, editor. Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings,
volume 576 of Lecture Notes in Computer Science. Springer, 1992.

[7] J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and compos-
ability of cryptographic protocols. In S. Halevi and T. Rabin, editors, TCC, volume 3876 of
Lecture Notes in Computer Science, pages 404–428. Springer, 2006.

[8] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge Uni-
versity Press, New York, NY, USA, 2004.

[9] S. Goldwasser and L. A. Levin. Fair computation of general functions in presence of immoral
majority. In A. Menezes and S. A. Vanstone, editors, CRYPTO, volume 537 of Lecture Notes
in Computer Science, pages 77–93. Springer, 1990.

[10] S. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party compu-
tation. ”STOC 2008, to appear”.

[11] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with guaranteed
output delivery in secure multiparty computation. In C. Dwork, editor, CRYPTO, volume
4117 of Lecture Notes in Computer Science, pages 483–500. Springer, 2006.

[12] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in private
computations. SIAM J. Computing, 29(4):1189–1208, 2000.

[13] S. Micali and P. Rogaway. Secure computation (abstract). In Feigenbaum [6], pages 392–404.

[14] B. Pinkas. Fair secure two-party computation. In E. Biham, editor, EUROCRYPT, volume
2656 of Lecture Notes in Computer Science, pages 87–105. Springer, 2003.

13



A Standard Definitions

A.1 Preliminaries

A function µ(·) is negligible if for every positive polynomial p(·) and all sufficiently large n it holds
that µ(n) < 1/p(n). A distribution ensemble X = {X(a, n)}a∈Dn, n∈N is an infinite sequence of
random variables indexed by a ∈ Dn and n ∈ N, where Dn is a set that may depend on n. (Looking
ahead, n will be the security parameter and Dn will denote the domain of the parties’ inputs.) Two
distribution ensembles X = {X(a, n)}a∈Dn, n∈N and Y = {Y (a, n)}a∈Dn, n∈N are computationally

indistinguishable, denoted X
c≡ Y , if for every non-uniform polynomial-time algorithm D there

exists a negligible function µ(·) such that for every n and every a ∈ Dn∣∣ Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]
∣∣ ≤ µ(n).

The statistical difference between two distributions X(a, n) and Y (a, n) is defined as

SD
(
X(a, n), Y (a, n)

)
=

1
2
·
∑

s

∣∣Pr[X(a, n) = s]− Pr[Y (a, n) = s]
∣∣ ,

where the sum ranges over s in the support of either X(a, n) or Y (a, n). Two distribution ensem-
bles X = {X(a, n)}a∈Dn, n∈N and Y = {Y (a, n)}a∈Dn, n∈N are statistically close, denoted X

s≡ Y ,
if there is a negligible function µ(·) such that for every n and every a ∈ Dn, it holds that
SD

(
X(a, n), Y (a, n)

)
≤ µ(n).

A.2 Secure Multi-Party Computation with Complete Fairness

Multi-party computation. A multi-party protocol for parties P = {P1, . . . , Pn} and computing
a functionality F = {fn}, with fn = (f1

n, . . . , fm
n ), is a protocol satisfying the following functional

requirement: if all parties hold the same value n, and Pi begins by holding input xi ∈ Xi
n, then

at the conclusion of the protocol party Pi obtains f i
n(x1, . . . , xm; r) for a uniformly-chosen random

string r, with all but negligible probability (in n).
In what follows, we define what we mean by a secure protocol. Our definition follows the

standard definition of [8] (based on [9, 13, 1, 3]), except that we require complete fairness even
though we are in the two-party setting. (Thus, our definition is equivalent to the one in [8] for the
case of an honest majority, even though we will not have an honest majority.) We consider active
adversaries, who may deviate from the protocol in an arbitrary manner, and static corruptions.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure
by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted party to whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure
if any adversary interacting in the real protocol (where no trusted party exists) can do no more
harm than if it was involved in the above-described ideal computation.

Execution in the ideal model. The parties are P = {P1, . . . , Pm}, and there is an adversary
A who has corrupted some subset I ⊂ P of them. An ideal execution for the computation of
F = {fn} proceeds as follows:

14



Inputs: All players Pi hold the same value of n, and their inputs xi ∈ Xi
n. The adversary A

receives an auxiliary input z.

Send inputs to trusted party: The honest parties send their inputs to the trusted party. A
may substitute any set of (coordinated)values for the corrupted parties that it controls and
sends them to the trusted party. Denote the values sent to the trusted party by x̄′.

Trusted party sends outputs: If x′i 6∈ Xi
n the trusted party sets x′ = x̂i for some default value

x̂i. Then, the trusted party chooses r uniformly at random and sends f i
n(x̄′; r) to Pi.

Outputs: The honest parties output whatever they were sent by the trusted party, the corrupted
parties output nothing, and A outputs any arbitrary (probabilistic polynomial-time com-
putable) function of its view.

We let idealF ,A(z)(x, y, n) be the random variable consisting of the output of the adversary and
the output of the honest parties following an execution in the ideal model as described above.

Execution in the real model. We next consider the real model in which a multi-party protocol
π is executed by P (and there is no trusted party). In this case, the adversary A gets the inputs
of the corrupted parties and sends all messages on behalf of these parties, using an arbitrary
polynomial-time strategy. The honest parties follow the instructions of π.

Let F be as above and let π be a multi-party protocol computing F . Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let realπ,A(z)(x, y, n) be the
random variable consisting of the view of the adversary and the output of the honest parties,
following an execution of π where all parties begin by holding n, and Pi begins by holding and
input xi.

Security as emulation of an ideal execution in the real model. Having defined the ideal and
real models, we can now define security of a protocol. Loosely speaking, the definition asserts that
a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows:

Definition 4 Let F be as above. Protocol π is said to securely compute F with complete fairness
if for every non-uniform probabilistic polynomial-time adversary A in the real model, there exists a
non-uniform probabilistic polynomial-time adversary S in the ideal model such that{

idealF ,S(z)(x̄, n)
}

x̄∈(X1
n×···×Xm

n ), z∈{0,1}∗, n∈N
c≡

{
realπ,A(z)(x̄, n)

}
x̄∈(X1

n×···×Xm
n ), z∈{0,1}∗, n∈N .

A.3 Secure Multi-Party Computation With Abort

This definition is the standard one for secure multi-party computation without an honest majority
[8] in that it allows early abort ; i.e., the adversary may receive its own outputs even though the
honest parties do not. We again let P = {P1, . . . Pm} denote the parties, and consider an adversary
A who has corrupted a subset I ⊂ P of them. The only change from the definition in Section A.2
is with regard to the ideal model for computing F = {fn}, which is now defined as follows:

Inputs: As previously.

Send inputs to trusted party: As previously.

15



Trusted party sends output to corrupted party: If for some i, x′i 6∈ Xi
n, the trusted party

sets x′i = x̂i for some default value x̂i. Otherwise, the trusted party chooses r uniformly
at random and computes zi = f i

n(x̄′; r) If P1 is corrupted, then for every party Pi that is
corrupted, the trusted party sends zi to this party (i.e., to the adversary A). If P1 is honest,
then the trusted party sends zi to every party.

Adversary decides whether to abort: If P1 is dishonest, then after receiving its output (as
described above), the adversary A either sends abort or continue to the trusted party. In the
former case the trusted party sends ⊥ to all honest parties, and in the latter case the trusted
party sends zj to Pj .

Outputs: As previously.

We let idealabort
F ,A(z)(x̄, n) be the random variable consisting of the output of the adversary and the

output of the honest parties following an execution in the ideal model as described above.

Definition 5 Let F be a functionality, and let π be a protocol computing F . Protocol π is said to
securely compute F with abort if for every non-uniform probabilistic polynomial-time adversary A
in the real model, there exists a non-uniform probabilistic polynomial-time adversary S in the ideal
model such that{

idealabort
F ,S(z)(x̄, n)

}
x̄∈(X1

n×···×Xm
n ), z∈{0,1}∗, n∈N

c≡
{
realπ,A(z)(x̄, n)

}
x̄∈(X1

n×···×Xm
n ), z∈{0,1}∗, n∈N

A.4 The Hybrid Model

The hybrid model combines both the real and ideal models. Specifically, an execution of a protocol
π in the hybrid model for some ideal functionality G involves the parties sending regular messages
to each other (as in the real model). However, in addition, the parties have access to a trusted
party computing G. The parties communicate with this trusted party in exactly the same way
as in the ideal models described above; the question of which ideal model is taken (that with or
without abort) must be specified. In this paper, we will always consider a hybrid model where the
functionality G is computed according to the ideal model with abort. Let G be a functionality and
let π be a multi-party protocol that includes real messages between the parties, and ideal subroutine
calls to G. Let A be a non-uniform probabilistic polynomial-time machine with auxiliary input z.
We let hybridGπ,A(z)(x̄, n) be the random variable consisting of the view of the adversary and the
output of the honest parties, following an execution of π (with ideal calls to G) where all players
begin by holding n, and Pi begins by holding input xi.

The hybrid model gives a powerful tool for proving the security of protocols. Specifically, it
enables us to construct a protocol π for securely computing some functionality F , while using a
subprotocol that securely computes G. Furthermore, it is possible to analyze the security of π
considering an ideal execution of G (rather than a real protocol that securely computes it). We
denote by π the protocol that uses ideal calls to G and by πρ the composed protocol where sequential
calls to G are replaced by sequential executions of the real protocol ρ. (Sequentiality here means
that while a given execution of ρ is being run, no other messages are sent.) This is summarized in
the following theorem, a close variant of which was proved in [3].

Theorem 6 Let ρ be a protocol that securely computes G with abort, and let π be a protocol that
securely computes F with complete fairness when given access to a trusted party who computes G

16



for the parties (according to the ideal model with abort). Then, the protocol πρ securely computes
F with complete fairness.

B Proof of Claim 1

Notice that the view of P1 in the hybrid world reveals nothing until the final round of the protocol.
In particular, the output it receives from ShareGen is independent of all inputs, and contains nothing
but random bits and signatures on these bits. The shares sent in the intermediate rounds have this
same property. We now provide a simulator S.

0. If in any of the following, S receives a forged signature from P1, S outputs fail and ends the
simulation.

1. S receives input x′1 from P1 intended for trusted functionality ShareGen. If x′1 /∈ {0, 1}, S sets
x′1 = 1 and continues the simulation as though P1’s input is 1.

2. S runs (pk, sk) ← SigGen(1k), creates random shares
(
(b(1)

1|1, b
(1)
2|1, b

(1)
3|1), . . . , (b

(m)
1|1 , b

(m)
2|1 , b

(m)
3|1 )

)
,

and gives these and pk to P1. If P1 aborts, S submits 1 to the trusted party for f and outputs
whatever P1 outputs.

3. S picks a value i∗ according to a geometric distribution with parameter α = 1
5 .

4. S now simulates round i for 1 ≤ i < m − 1 by generating and sending to P1 (signed) shares
of b

(i)
2|2 and b

(i)
3|3 in round i.

(a) If P1 aborts in round i ≤ i∗, then S submits

x̂ =
{

0 with probability 1
2

1 with probability 1
2

to the trusted party and outputs whatever P1 outputs.

(b) If P1 aborts in round i > i∗, then S submits x′1 to the trusted party of f , and outputs
whatever P1 outputs.

5. If P1 has not yet aborted in round m, then S sends x′1 to the trusted party, receives bout =
Majority(x′1, x2, x3), and creates b

(m)
1|2 , b

(m)
1|3 , b

(m)
2|2 , b

(m)
2|3 , b

(m)
3|2 and b

(m)
3|3 such that, together with the

shares given to P1 at the beginning of the simulation, for j ∈ {1, 2, 3}, b
(m)
j|1 ⊕b

(m)
j|2 ⊕b

(m)
j|3 = bout.

He gives these shares to P1, and outputs whatever he outputs.

Due to the security of the underlying signature scheme, the probability that S outputs fail is
negligible in k. Note that the view of P1 is otherwise identical in both worlds. This is because
the shares are independent of all inputs; they are random values whether generated by S or by the
trusted functionality for ShareGen. We only have to argue, therefore, that the other two players
output identically distributed values in both worlds when P1 aborts (if P1 never aborts, then clearly
the simulation is successful). We break our analysis into the following cases:

17



• If P1 gives incorrect input in either step 1 of the simulation or step 1 of the protocol in the
hybrid world, then in both worlds, signed shares are created with a default value of 1 in place
of its actual input. The rest of the protocol and simulation then proceed as though this were
the value submitted to ShareGen.

• If P1 aborts in Step 2, then S submits (1, x′′2) to the trusted party, and the output of P2 and P3

is Majority(1, x′′2, x3) = OR(x′′2, x3). In the hybrid world, they execute an ideal computation of
the OR functionality. It follows that the joint distribution over the view of A and the outputs
of P2 and P3 is the same in both worlds. In the following cases, we assume that P1 aborts
after the simulation of ShareGen is complete, in round i of the message exchange.

• If x2 = x3

In the ideal world, the value sent by S to the trusted party is irrelevant when x2 = x3. The
honest parties both output f(1, x2, x3) = f(0, x2, x3) = x2 = x3. In the hybrid world, both P2

and P3 output b
(i−1)
1 = f(x̂, x2, x3) = x2 = x3 if i ≤ i∗, and b

(i−1)
1 = f(x′1, x2, x3) = x2 = x3

if i > i∗. (Note that this relies on the properties of our particular functionality.)

• If x2 6= x3

For i ≤ i∗, in both worlds the output of P2 and P3 is

bout =
{

f(0, x2, x3) = 0 with probability 1
2

f(1, x2, x3) = 1 with probability 1
2

by both the specification of ShareGen and the description of S. For i > i∗, in the hybrid
world, b

(i−1)
1 = f(x′1, x2, x3), which is exactly what P2 and P3 receive in the ideal world, since

S submits x′1 in round i∗.

C Completing the Proof of Claim 2

We first note that the probability S outputs fail is negligible, due to the security of the underling
signature scheme. We state the following claim:

Claim 5 If P1 and P2 both abort, then S always sends (0, 1) or (1, 0) to the trusted party.

We leave verification to the reader. We must prove that for any set of fixed inputs, the joint
distribution over the possible views of A and the output of P3 is equal in the ideal and hybrid
worlds:

(viewhyb(x1, x2, x3),outhyb(x1, x2, x3)) ≡ (viewideal(x1, x2, x3),outideal(x1, x2, x3)) (8)

We begin by noting that this is trivially true when no players ever abort. It is also easy to verify
that this is true when P1 aborts during the execution of ShareGen. We therefore assume that A
aborts player P1 at some point after the execution of ShareGen. We will break up the view of A
into two parts: the view before P1 aborts, where a particular instance of this view is denoted by ~ai,
and the single message intended for P2 that A receives after P1 aborts, denoted by b

(i−1)
1 . Letting

i denote the round in which P1 aborts, and bout the value output by P3, we wish to prove:

Pr
[
(viewhyb,outhyb) = (~ai, b

(i−1)
1 , bout)

]
= Pr

[
(viewideal,outideal) = (~ai, b

(i−1)
1 , bout)

]
18



(we drop explicit mention of the inputs to improve readability). Towards proving this, we first prove
the following two claims.

Claim 6 For all fixed inputs and all feasible adversarial views (~ai, b
(i−1)
1 ),

Pr
[
(viewhyb,outhyb) = (~ai, b

(i−1)
1 , bout)

∧
i > i∗

]
= Pr

[
(viewideal,outideal) = (~ai, b

(i−1)
1 , bout)

∧
i > i∗

]
Proof: We denote by P⊥

2 the event that P2 aborts the protocol (either at the same time as
P1, or after P1 aborts, during the exchange of the shares of b

(i−1)
1 ). We also replace the event(

viewhyb = (~ai, b
(i−1)
1 )

∧
i > i∗

)
by Ehyb, and the event

(
viewideal = (~ai, b

(i−1)
1 )

∧
i > i∗

)
by Eideal

in order to shorten notation. We have the following:

Pr
[
(viewhyb,outhyb) = (~ai, b

(i−1)
1 , bout)

∧
i > i∗

]
= Pr

[
outhyb = bout

∧
P⊥

2

∧
Ehyb

]
+Pr

[
outhyb = bout

∧
¬P⊥

2

∧
Ehyb

]
= Pr

[
outhyb = bout | P⊥

2

∧
Ehyb

]
· Pr

[
P⊥

2

∧
Ehyb

]
+Pr

[
outhyb = bout | ¬P⊥

2

∧
Ehyb

]
· Pr

[
¬P⊥

2

∧
Ehyb

]
and that the same is true in the ideal world. It follows from the descriptions of the protocol and
the simulator that

Pr
[
P⊥

2

∧
viewhyb = (~ai, b

(i−1)
1 )

∧
i > i∗

]
= Pr

[
P⊥

2

∧
viewideal = (~ai, b

(i−1)
1 )

∧
i > i∗

]
and similarly that

Pr
[
¬P⊥

2

∧
viewhyb = (~ai, b

(i−1)
1 )

∧
i > i∗

]
= Pr

[
¬P⊥

2

∧
viewideal = (~ai, b

(i−1)
1 )

∧
i > i∗

]
.

The above two equalities hold because the protocol is designed such that any view ~ai occurs with the
same probability in both worlds. Furthermore, given that i > i∗, it holds that b

(i−1)
1 = f(x1, x2, x3),

independent of ~ai. P2 decides whether to abort based only on these two variables, so the decision
is the same in both worlds. We therefore need only to prove that

Pr
[
outhyb = bout | P⊥

2

∧
viewhyb = (~ai, b

(i−1)
1 )

∧
i > i∗

]
= Pr

[
outideal = bout | P⊥

2

∧
viewideal = (~ai, b

(i−1)
1 )

∧
i > i∗

]
(9)

and that

Pr
[
outhyb = bout | ¬P⊥

2

∧
viewhyb = (~ai, b

(i−1)
1 )

∧
i > i∗

]
= Pr

[
outideal = bout | ¬P⊥

2

∧
viewideal = (~ai, b

(i−1)
1 )

∧
i > i∗

]
(10)

Both equations follow easily again from the protocol and simulator descriptions. To see Equation
9, note that in the hybrid world when both P1 and P2 abort, P3 always outputs his own input,

19



bout = x3. In the ideal world, recall from claim 5 that anytime P1 and P2 both abort, and in
particular in round i > i∗, S submits either (0, 1) or (1, 0) to the trusted party, resulting in
bout = x3. For Equation 10, note that in the hybrid world when P1 aborts in round i > i∗, and P2

does not, P3 outputs bout = f(x1, x2, x3). In the ideal world, this is also true, as S submits (x1, x2)
to the trusted party (either in step 6a or in step 7b).

We proceed now to the more difficult claim, in the case when i ≤ i∗:

Claim 7 For all fixed inputs, for all outputs bout, and for all feasible adversarial views (~ai, b
(i−1)
1 ),

Pr
[
(viewhyb,outhyb) = (~ai, b

(i−1)
1 , bout)

∧
i ≤ i∗

]
= Pr

[
(viewideal,outideal) = (~ai, b

(i−1)
1 , bout)

∧
i ≤ i∗

]
Proof: We denote by P⊥

2 , as before, the event that P2 aborts the protocol. We now replace the
event

(
viewhyb = (~ai, b

(i−1)
1 )

∧
i ≤ i∗

)
by Ehyb, and the event

(
viewideal = (~ai, b

(i−1)
1 )

∧
i ≤ i∗

)
by

Eideal to shorten notation. We again have that

Pr
[
(viewhyb,outhyb) = (~ai, b

(i−1)
1 , bout)

∧
i ≤ i∗

]
= Pr

[
outhyb = bout

∧
P⊥

2

∧
Ehyb

]
+Pr

[
outhyb = bout

∧
¬P⊥

2

∧
Ehyb

]
= Pr

[
outhyb = bout | P⊥

2

∧
Ehyb

]
· Pr

[
P⊥

2

∧
Ehyb

]
+Pr

[
outhyb = bout | ¬P⊥

2

∧
Ehyb

]
· Pr

[
¬P⊥

2

∧
Ehyb

]
and again, the same probabilistic argument holds in the ideal world. Rewriting the above, therefore,
we equivalently must prove that

Pr
[
outhyb = bout | P⊥

2

∧
Ehyb

]
· Pr

[
P⊥

2 | Ehyb

]
· Pr [Ehyb]

+Pr
[
outhyb = bout | ¬P⊥

2

∧
Ehyb

]
· Pr

[
¬P⊥

2 | Ehyb

]
· Pr [Ehyb]

= Pr
[
outideal = bout | P⊥

2

∧
Eideal

]
· Pr

[
P⊥

2 | Eideal

]
· Pr [Eideal]

+Pr
[
outideal = bout | ¬P⊥

2

∧
Eideal

]
· Pr

[
¬P⊥

2 | Eideal

]
· Pr [Eideal]

Note that trivially have

Pr
[
¬P⊥

2 | Ehyb

]
= Pr

[
¬P⊥

2 | Eideal

]
and that

Pr
[
P⊥

2 | Ehyb

]
= Pr

[
P⊥

2 | Eideal

]
Furthermore, by the definition of the protocol, if P2 aborts, P3 outputs bout = x3 (just as in the
previous claim). It is easy to see that this is true in the ideal world as well, so we have

Pr
[
outhyb = bout | P⊥

2

∧
Ehyb

]
= Pr

[
outideal = bout | P⊥

2

∧
Eideal

]

20



When P2 does not abort, in both worlds bout = b
(i−1)
1 . So as long as we can prove that

Pr [Ehyb] = Pr [Eideal] (11)

it will then follow that

Pr
[
outideal = bout | ¬P⊥

2

∧
Eideal

]
= Pr

[
outhyb = bout | ¬P⊥

2

∧
Ehyb

]
which will complete the proof of our claim. Before proceeding, we make one final simplification of
Equation 11. Recall that any view ~ai of A (after the completion of ShareGen) consists simply of
the values b

(1)
3 , . . . , b

(i)
3 , b

(i−1)
1 . Letting viewi−1

hyb (respectively viewi−1
ideal) denote the values received

by A in the first i− 1 rounds of the protocol in the hybrid (resp. ideal) world, and viewi
hyb (resp.

viewi
ideal) denote the round i message, along with the following final message received by A after

it aborts P1 in round i, we note that:

Pr [Ehyb]

= Pr
[
viewi

hyb = (b(i)
3 , b

(i−1)
1 ) | viewi−1

hyb = ~ai−1

∧
i ≤ i∗

]
· Pr

[
viewi−1

hyb = ~ai−1

∧
i ≤ i∗

]
and, equivalently in the ideal world:

Pr [Eideal]

= Pr
[
viewi

ideal = (b(i)
3 , b

(i−1)
1 ) | viewi−1

ideal = ~ai−1

∧
i ≤ i∗

]
· Pr

[
viewi−1

ideal = ~ai−1

∧
i ≤ i∗

]
It is trivially true from the protocol and simulator descriptions that

Pr
[
viewi−1

hyb = ~ai−1

∧
i ≤ i∗

]
= Pr

[
viewi−1

ideal = ~ai−1

∧
i ≤ i∗

]
Furthermore, conditioned i ≤ i∗, we know that viewi

hyb (resp., viewi
ideal) is independent of viewi−1

hyb

(resp., viewi−1
ideal). Therefore, to prove Equation 11, and thus Theorem 2, it suffices to prove that

Pr
[
viewi

hyb = (b(i)
3 , b

(i−1)
1 ) | i ≤ i∗

]
= Pr

[
viewi

ideal = (b(i)
3 , b

(i−1)
1 ) | i ≤ i∗

]
We proceed now to do this by looking at every possible set of inputs (x1, x2, x3).

If (x1 = x2 = x3) :

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x1, x1)

]
= Pr

[
(b(i)

3 , b
(i−1)
1 )hyb = (x1, x1)

]
= 1

In both worlds, b
(i)
3 is always x1. When P1 aborts in the ideal world, in accordance with step 5a,

S chooses x̂1 = x1 = x2 with probability 3
8 and sends b

(i−1)
1 = x1 to A. If S chooses x̂1 6= x1, then

it submits (x̂1, x2) for x̂1 6= x2 to the trusted party, and bout = x3 = x1, so again b
(i−1)
1 = x1. The

analysis is even simpler in the hybrid world, as both values are always x1.

21



If (x1 = x2 6= x3) :

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x1, x1)

]
=

(
(1− α) · 3

8

)
+ α =

1
2

Pr
[
(b(i)

3 , b
(i−1)
1 )hyb = (x1, x1)

]
=

(
(1− α) · 1

2

)
+

(
α · 1

2

)
=

1
2

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x1, x1)

]
= (1− α) · 5

8
=

1
2

Pr
[
(b(i)

3 , b
(i−1)
1 )hyb = (x1, x1)

]
=

(
(1− α) · 1

2

)
+

(
α · 1

2

)
=

1
2

If (x3 = x1 6= x2) :

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x1, x1)

]
=

(
1
2
(1− α) · 1

4

)
+ α =

3
10

Pr
[
(b(i)

3 , b
(i−1)
1 )hyb = (x1, x1)

]
=

(
1
2
(1− α) · 1

2

)
+

(
α · 1

2

)
=

3
10

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x1, x2)

]
=

1
2
(1− α) · 3

4
=

3
10

Pr
[
(b(i)

3 , b
(i−1)
1 )hyb = (x1, x2)

]
=

(
1
2
(1− α) · 1

2

)
+

(
α · 1

2

)
=

3
10

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x2, x1)

]
= Pr

[
(b(i)

3 , b
(i−1)
1 )hyb = (x2, x1)

]
=

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x2, x2)

]
= Pr

[
(b(i)

3 , b
(i−1)
1 )hyb = (x2, x2)

]
=

1
2
(1− α) · 1

2
=

1
5

If (x1 6= x2 = x3) :

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x1, x1)

]
= Pr

[
(b(i)

3 , b
(i−1)
1 )hyb = (x1, x1)

]
= 0

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x1, x2)

]
= Pr

[
(b(i)

3 , b
(i−1)
1 )hyb = (x1, x2)

]
=

1
2
(1− α) =

2
5

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x2, x1)

]
= Pr

[
(b(i)

3 , b
(i−1)
1 )hyb = (x2, x1)

]
= 0

Pr
[
(b(i)

3 , b
(i−1)
1 )ideal = (x2, x2)

]
= Pr

[
(b(i)

3 , b
(i−1)
1 )hyb = (x2, x2)

]
=

1
2
(1− α) + α =

3
5

The key observation with this last set of inputs is that when x2 = x3, and i < i∗, regardless of
what value S chooses for x̂1, b

(i−1)
1 = x2 = x3, just as in the hybrid world.

22


