The Muffin Problem

Guangi Cui - Montgomery Blair HS
John Dickerson- University of MD
Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD
Erik Metz - University of MD
Jacob Prinz-University of MD
Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD
Sung Hyun Yoo - Bergen County Academies (in NJ)
How it Began

A Recreational Math Conference
(Gathering for Gardner)
May 2016

I found a pamphlet:
The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles
Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets \(\frac{5}{3} \) where nobody gets a tiny sliver?
Five Muffins, Three Students, Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{1}{3}$
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE

- **YES**
- **NO**
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO

YES WE CAN!

We use ! since we are excited that we can!
Five Muffins, Three People—Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{5}{12}$
Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$.

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO
Can We Do Better?

The smallest piece in the above solution is \(\frac{5}{12} \).

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO

NO WE CAN’T!

We use ! since we are excited to prove we can’t do better!
Five Muffins, Three People—Can't Do Better Than $\frac{5}{12}$

There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.

(**Henceforth:** All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$.

(**Henceforth:** All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: **Someone** gets ≥ 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}$$

Great to see $\frac{5}{12}$
Be Amazed Now! And Later!

1. Procedure for 5 muffins, 3 people, smallest piece \(\frac{5}{12} \).
2. NO Procedure for 5 muffins, 3 people, smallest piece > \(\frac{5}{12} \).

Amazing That Have Exact Result!
Be Amazed Now! And Later!

1. Procedure for 5 muffins, 3 people, smallest piece $\frac{5}{12}$.
2. NO Procedure for 5 muffins, 3 people, smallest piece $> \frac{5}{12}$.

Amazing That Have Exact Result!

Prepare To Be More Amazed! On Next Page!
Amazing Results!

1. Procedure for 43 muffins, 33 people, smallest piece $\frac{91}{264}$.
2. NO Procedure for 43 muffins, 33 people, smallest piece $> \frac{91}{264}$.

1. Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.
2. NO Procedure for 52 muffins, 11 people, smallest piece $> \frac{83}{176}$.

All done by hand, no use of a computer. Co-author Erik Metz is a muffin savant!
Amazing Results!

1. Procedure for 43 muffins, 33 people, smallest piece $\frac{91}{264}$.
2. NO Procedure for 43 muffins, 33 people, smallest piece $> \frac{91}{264}$.

1. Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.
2. NO Procedure for 52 muffins, 11 people, smallest piece $> \frac{83}{176}$.

1. Procedure for 35 muffins, 13 people, smallest piece $\frac{64}{143}$.
2. NO Procedure for 35 muffins, 13 people, smallest piece $> \frac{64}{143}$.

All done by hand, no use of a computer. Co-author Erik Metz is a muffin savant!
Amazing Results!

1. Procedure for 43 muffins, 33 people, smallest piece \(\frac{91}{264}\).
2. NO Procedure for 43 muffins, 33 people, smallest piece \(>\ \frac{91}{264}\).

1. Procedure for 52 muffins, 11 people, smallest piece \(\frac{83}{176}\).
2. NO Procedure for 52 muffins, 11 people, smallest piece \(>\ \frac{83}{176}\).

1. Procedure for 35 muffins, 13 people, smallest piece \(\frac{64}{143}\).
2. NO Procedure for 35 muffins, 13 people, smallest piece \(>\ \frac{64}{143}\).

All done by hand, no use of a computer
Amazing Results!

1. Procedure for 43 muffins, 33 people, smallest piece $\frac{91}{264}$.
2. NO Procedure for 43 muffins, 33 people, smallest piece $\frac{91}{264}$.

1. Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.
2. NO Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.

1. Procedure for 35 muffins, 13 people, smallest piece $\frac{64}{143}$.
2. NO Procedure for 35 muffins, 13 people, smallest piece $\frac{64}{143}$.

All done by hand, no use of a computer

Co-author Erik Metz is a muffin savant!
General Problem

How can you divide and distribute m muffins to s students so that each student gets $\frac{m}{s}$ AND the MIN piece is MAXIMIZED?

An (m, s)-procedure is a way to divide and distribute m muffins to s students so that each student gets $\frac{m}{s}$ muffins.

An (m, s)-procedure is optimal if it has the largest smallest piece of any procedure.

Let $f(m, s)$ be the smallest piece in an optimal (m, s)-procedure.

We have shown $f(5, 3) = \frac{5}{12}$ here.

We have shown $f(m, s)$ exists, is rational, and is computable using a Mixed Int Program (in paper).
$f(3, 5) \geq ?$

Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?
Think about it at your desk.
Clearly \(f(3, 5) \geq \frac{1}{5} \). Can we get \(f(3, 5) > \frac{1}{5} \)?

Think about it at your desk.

\(f(3, 5) \geq \frac{1}{4} \)

1. Divide 2 muffin \([\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]\)
2. Divide 1 muffin \([\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]\)
3. Give 4 students \((\frac{5}{20}, \frac{7}{20})\)
4. Give 1 students \((\frac{6}{20}, \frac{6}{20})\)
Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?

Think about it at your desk.

$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$
2. Divide 1 muffin $[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]$
3. Give 4 students $[\frac{5}{20}, \frac{7}{20}]$
4. Give 1 students $[\frac{6}{20}, \frac{6}{20}]$

Can we do better? Vote:
$f(3, 5) \geq ?$

Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?
Think about it at your desk.
$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$
2. Divide 1 muffin $[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]$
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

Can we do better? Vote:

YES
NO
UNKNOWN TO SCIENCE
Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?
Think about it at your desk.

1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

Can we do better? Vote:
- YES
- NO
- UNKNOWN TO SCIENCE

NO Proof on next slide.
There is a procedure for 3 muffins, 5 students where each student gets $\frac{3}{5}$ muffins, smallest piece N. We want $N \leq \frac{1}{4}$.

Case 0: Some student gets 1 piece, so size $\frac{3}{5}$. Cut that piece in half and give both $\frac{3}{10}$-sized pieces to that student. (Note $\frac{3}{10} > \frac{1}{4}$.) Reduces to other cases.
(*Henceforth:* All students get ≥ 2 pieces.)

Case 1: Some student gets ≥ 3 pieces. Then $N \leq \frac{3}{5} \times \frac{1}{3} = \frac{1}{5} < \frac{1}{4}$. (*Henceforth:* All students get 2 pieces.)

Case 2: All students get 2 pieces. 5 students, so 10 pieces. **Some muffin** gets cut into ≥ 4 pieces. Some piece $\leq \frac{1}{4}$.
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \([\frac{5}{12}, \frac{7}{12}]\)
2. Divide 1 muffin \([\frac{6}{12}, \frac{6}{12}]\)
3. Give 2 students \((\frac{6}{12}, \frac{7}{12}, \frac{7}{12})\)
4. Give 1 students \((\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})\)
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \(\left[\frac{5}{12}, \frac{7}{12} \right] \)
2. Divide 1 muffin \(\left[\frac{6}{12}, \frac{6}{12} \right] \)
3. Give 2 students \(\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12} \right) \)
4. Give 1 students \(\left(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12} \right) \)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \(\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20} \right] \)
2. Divide 1 muffin \(\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20} \right] \)
3. Give 4 students \(\left(\frac{5}{20}, \frac{7}{20} \right) \)
4. Give 1 students \(\left(\frac{6}{20}, \frac{6}{20} \right) \)
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \(\left[\frac{5}{12}, \frac{7}{12}\right]\)
2. Divide 1 muffin \(\left[\frac{6}{12}, \frac{6}{12}\right]\)
3. Give 2 students \(\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\right)\)
4. Give 1 students \(\left(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}\right)\)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \(\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]\)
2. Divide 1 muffin \(\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]\)
3. Give 4 students \(\left(\frac{5}{20}, \frac{7}{20}\right)\)
4. Give 1 students \(\left(\frac{6}{20}, \frac{6}{20}\right)\)

\(f(3, 5)\) proc is \(f(5, 3)\) proc but swap Divide/Give and mult by \(\frac{3}{5}\).
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \(\left[\frac{5}{12}, \frac{7}{12} \right] \)
2. Divide 1 muffin \(\left[\frac{6}{12}, \frac{6}{12} \right] \)
3. Give 2 students \(\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12} \right) \)
4. Give 1 students \(\left(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12} \right) \)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \(\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20} \right] \)
2. Divide 1 muffin \(\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20} \right] \)
3. Give 4 students \(\left(\frac{5}{20}, \frac{7}{20} \right) \)
4. Give 1 students \(\left(\frac{6}{20}, \frac{6}{20} \right) \)

\(f(3, 5) \) proc is \(f(5, 3) \) proc but swap Divide/Give and mult by \(\frac{3}{5} \).

Theorem: \(f(m, s) = \frac{m}{s} f(s, m) \).
Floor-Ceiling Theorem (Generalize $f(5, 3) \leq \frac{5}{12}$)

$$f(m, s) \leq \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s\lceil 2m/s \rceil}, 1 - \frac{m}{s\lceil 2m/s \rceil}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Someone gets $\geq \lceil \frac{2m}{s} \rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s\lceil 2m/s \rceil}$.

Someone gets $\leq \lfloor \frac{2m}{s} \rfloor$ pieces. \exists piece $\geq \frac{m}{s} \lfloor \frac{1}{2m/s} \rfloor = \frac{m}{s\lfloor 2m/s \rfloor}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s\lceil 2m/s \rceil}$.
CLEVERNESS, COMP PROGS for the procedure.

Floor-Ceiling Theorem for optimality.

\[f(1, 3) = \frac{1}{3} \]

\[f(3k, 3) = 1. \]

\[f(3k + 1, 3) = \frac{3k-1}{6k}, \ k \geq 1. \]

\[f(3k + 2, 3) = \frac{3k+2}{6k+6}. \]
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

\[f(4k, 4) = 1 \] (easy)

\[f(1, 4) = \frac{1}{4} \] (easy)

\[f(4k + 1, 4) = \frac{4k-1}{8k}, \; k \geq 1. \]

\[f(4k + 2, 4) = \frac{1}{2}. \]

\[f(4k + 3, 4) = \frac{4k+1}{8k+4}. \]

Is FIVE student case a Mod 5 pattern?
VOTE YES or NO
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

\[f(4k, 4) = 1 \text{ (easy)} \]

\[f(1, 4) = \frac{1}{4} \text{ (easy)} \]

\[f(4k + 1, 4) = \frac{4k - 1}{8k}, \quad k \geq 1. \]

\[f(4k + 2, 4) = \frac{1}{2}. \]

\[f(4k + 3, 4) = \frac{4k + 1}{8k + 4}. \]

Is FIVE student case a Mod 5 pattern?

VOTE YES or NO

YES but with some exceptions
FIVE Students, \(m = 1, \ldots, 11 \)

\[
f(1, 5) = \frac{1}{5} \quad \text{(easy or use } f(1, 5) = \frac{5}{1} f(5, 1).)\]

\[
f(2, 5) = \frac{1}{5} \quad \text{(easy or use } f(2, 5) = \frac{5}{2} f(5, 2).)\]

\[
f(3, 5) = \frac{1}{4} \quad \text{(use } f(3, 5) = \frac{3}{5} f(5, 3).)\]

\[
f(4, 5) = \frac{3}{10} \quad \text{(use } f(4, 5) = \frac{4}{5} f(5, 4).)\]

\[
f(5, 5) = 1 \quad \text{(Easy and fits pattern)}\]

\[
f(6, 5) = \frac{2}{5} \quad \text{(Use Floor-Ceiling Thm, fits pattern)}\]

\[
f(7, 5) = \frac{1}{3} \quad \text{(Use Floor-Ceiling Thm, NOT pattern)}\]

\[
f(8, 5) = \frac{2}{5} \quad \text{(Use Floor-Ceiling Thm, fits pattern)}\]

\[
f(9, 5) = \frac{2}{5} \quad \text{(Use Floor-Ceiling Thm, fits pattern)}\]

\[
f(10, 5) = 1 \quad \text{(Easy and fits pattern)}\]

\[
f(11, 5) = \text{ (Will come back to this later)}\]
CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

For $k \geq 1$, $f(5k, 5) = 1$.

For $k = 1$ and $k \geq 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$

For $k \geq 2$, $f(5k + 2, 5) = \frac{5k-2}{10k}$

For $k \geq 1$, $f(5k + 3, 5) = \frac{5k+3}{10k+10}$

For $k \geq 1$, $f(5k + 4, 5) = \frac{5k+1}{10k+5}$
What About FIVE students, ELEVEN muffins?

$f(11, 5) \geq \frac{13}{30}$.

Procedure:

1. Divide 8 muffins into $(\frac{13}{30}, \frac{17}{30})$.
2. Divide 2 muffins into $(\frac{14}{30}, \frac{16}{30})$.
3. Divide 1 muffin into $(\frac{15}{30}, \frac{15}{30})$.
4. Give 2 students $[\frac{14}{30}, \frac{13}{30}, \frac{13}{30}, \frac{13}{20}, \frac{13}{20}]$
5. Give 1 student $[\frac{17}{30}, \frac{17}{30}, \frac{16}{30}, \frac{16}{20}]$
6. Give 2 students $[\frac{17}{30}, \frac{17}{30}, \frac{17}{30}, \frac{15}{30}]$.
What About FIVE students, ELEVEN muffins?

\[f(m, s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\} \leq 0.44. \]

So

\[\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666 \ldots \]
What About FIVE students, ELEVEN muffins?

\[f(m, s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\} \leq 0.44. \]

So
\[\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666\ldots \]

VOTE:

1. \(f(11, 5) = \frac{13}{30} \): Needs NEW methods to bound \(f(m, s) \).
2. \(f(11, 5) = \frac{11}{25} \): Needs NEW better procedure.
3. \(f(11, 5) = \alpha \) where \(\frac{13}{30} < \alpha < \frac{11}{25} \). Needs both:
4. **UNKNOWN TO SCIENCE!**
What About FIVE students, ELEVEN muffins?

\[f(m, s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\} \leq 0.44. \]

So

\[\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666 \ldots \]

VOTE:

1. \(f(11, 5) = \frac{13}{30} \): Needs NEW methods to bound \(f(m, s) \).
2. \(f(11, 5) = \frac{11}{25} \): Needs NEW better procedure.
3. \(f(11, 5) = \alpha \) where \(\frac{13}{30} < \alpha < \frac{11}{25} \). Needs both:
4. **UNKNOWN TO SCIENCE!**

KNOWN: \(f(11, 5) = \frac{13}{30} \)

HAPPY: New opt tech more interesting than new proc.
$f(11, 5) = \frac{13}{30}$, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece N. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. $N \leq \frac{1}{3} < \frac{13}{30}$.

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)
\[f(11, 5) = \frac{13}{30}, \text{ Easy Case Based on Students} \]

Case 2: Some student gets \(\geq 6 \) pieces.

\[
N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.
\]

Case 3: Some student gets \(\leq 3 \) pieces.

One of the pieces is

\[
\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.
\]

Look at the muffin it came from to find a piece that is

\[
\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.
\]

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)
Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note \(\leq 11 \) pieces are \(> \frac{1}{2} \).

\(s_4 \) is number of students who get 4 pieces

\(s_5 \) is number of students who get 5 pieces

\[
4s_4 + 5s_5 = 22
\]

\[
s_4 + s_5 = 5
\]

\(s_4 = 3 \): There are 3 students who have 4 pieces.

\(s_5 = 2 \): There are 2 students who have 5 pieces.
\(f(11, 5) = \frac{13}{30}, \) Fun Cases

\[\diamond \diamond \diamond \diamond \diamond \quad (\text{Sums to } 11/5) \]
\[\diamond \diamond \diamond \diamond \diamond \quad (\text{Sums to } 11/5) \]

\[\circ \circ \circ \circ \quad (\text{Sums to } 11/5) \]
\[\circ \circ \circ \circ \quad (\text{Sums to } 11/5) \]
\[\circ \circ \circ \circ \quad (\text{Sums to } 11/5) \]

\[\circ \circ \circ \circ \quad (\text{Sums to } 11/5) \]

Case 4.1: One of (say)

\[\circ \circ \circ \circ \quad (\text{Sums to } 11/5) \]

is \(\leq \frac{1}{2} \). Then there is a piece

\[
\geq \frac{(11/5) - (1/2)}{3} = \frac{17}{30}.
\]

The other piece from the muffin is

\[
\leq 1 - \frac{17}{30} = \frac{13}{30} \quad \text{Great to see } \frac{13}{30}.
\]
$f(11, 5) = \frac{13}{30}$, Fun Cases

Case 4.2: All

- ○ ○ ○ ○ (Sums to 11/5)
- ○ ○ ○ ○ (Sums to 11/5)
- ○ ○ ○ ○ ○ (Sums to 11/5)

are $> \frac{1}{2}$.
There are ≥ 12 pieces $> \frac{1}{2}$. Can't occur.
The technique for $f(11, 5) \leq \frac{13}{30}$ has a generalization with a eight subcases. We do one concrete example:

$$f(24, 11) \leq \frac{19}{44}$$

(We have matching lower bound also)

Definition: Assume we have a protocol where all muffins are cut into two pieces. If x is a piece then the other piece in the muffin it came from is its **buddy**. Note that $B(x) = 1 - x$.
\[f(24, 11) \leq \frac{19}{44} \]

Theorem: \(f(24, 11) \leq \frac{19}{44} \) (≥ also known)

Assume \((24, 11)\)-procedure with smallest piece \(> \frac{19}{44}\).
Can assume all muffin cut in two and all student gets \(\geq 2\) shares.
We show that there is a piece \(\leq \frac{19}{44}\).

Case 1: A student gets \(\geq 6\) shares. Some piece \(\leq \frac{24}{\frac{11}{6}} < \frac{19}{44}\).

Case 2: A student gets \(\leq 3\) shares. Some piece \(\geq \frac{24}{\frac{11}{3}} = \frac{8}{11}\).
Buddy of that piece \(\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}\).

Case 3: Every muffin is cut in 2 pieces and every student gets either 4 or 5 shares. Total number of shares is 48.
How many students get 4? 5? Where are the Shares?

Let s_4 (s_5) be the number of 4-students (5-students).

\[
4s_4 + 5s_5 = 48 \\
s_4 + s_5 = 11 \quad \text{Get } s_4 = 7 \text{ and } s_5 = 4
\]

Case 3.1: (\exists) 4-sh $\leq \frac{21}{44}$. Rm. Now: 3 shares $\geq \frac{24}{11} - \frac{21}{44}$. (\exists) share

\[
\geq \left(\frac{24}{11} - \frac{21}{44} \right) = \frac{25}{44}.
\]

Buddy is

\[
\leq 1 - \frac{25}{44} = \frac{19}{44}.
\]

SO can assume all 4-shares are $> \frac{21}{44}$.

By similar reasoning:

Case 3.2: 4-shares in $\left(\frac{21}{44}, \frac{25}{44} \right)$, 5-shares in $\left(\frac{19}{44}, \frac{20}{44} \right)$.

\[
\begin{pmatrix}
19/44 & 20 \text{ 5-shs} & 0 \text{ shs} & 28 \text{ 4-shs} & 25/44
\end{pmatrix}
\]
Claim 1: There are no shares $x \in \left[\frac{23}{44}, \frac{24}{44} \right]$.

If there was such a share then $B(x) \in \left[\frac{20}{44}, \frac{21}{44} \right]$.

The following picture captures what we know so far.
Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \(\leq 2 \) L4 shares then he has

\[
< 2 \times \left(\frac{23}{44} \right) + 2 \times \left(\frac{25}{44} \right) = \frac{24}{11}.
\]

Contradiction: There are at least \(3 \times s_4 = 3 \times 7 = 21 \) L4 shares. But there are only 20.
The Buddy-Match Method!

Can Floor-Ceiling and Interval-Method do everything? No. They are very good when \(\frac{2m}{s} > 3 \) but NOT so good otherwise. We do a concrete example of The Buddy-Match Method

\[
f(43, 39) \leq \frac{53}{156}
\]

(We have matching lower bound also)

Definition: Assume we have a protocol where all students get 2 or 3 shares. If \(x \) is a 2-share then the other share that student has is the shares match. Note that \(B(x) = \frac{m}{s} 1 - x \).

Warning: We will apply \(M \) to intervals. These intervals have to have only 2-shares in them! But they will!
Theorem $f(43, 39) \leq \frac{53}{156}$ (≥ also known).
Assume there is an (43, 39)-procedure with smallest piece > $\frac{53}{156}$. Can assume all muffins cut in 2 pieces, all students get ≥ 2 shares.

Case 1: A student gets ≥ 4 shares. Some share ≤ $\frac{43}{39 \times 4} < \frac{53}{156}$.

Case 2: A student gets ≤ 1 shares. Can’t occur.

Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The total number of shares is 86.
How Many Students get Two Shares? Three Shares?

Let \(s_2 \) \((s_3)\) be the number of 2-students (3-students).

\[
2s_2 + 3s_3 = 86 \\
\quad s_2 + s_3 = 39 \text{ Get } s_2 = 31 \text{ and } s_3 = 8
\]

Case 3.1, 3.2, 3.3, 3.4:
(∃) 3-share \(\geq \frac{66}{156} \). Rm. Now 2-shares \(\geq \frac{43}{39} - \frac{66}{156} = \frac{53}{78} \).

So some share \(\leq \frac{53}{156} \).

By similar reasoning (Case 3.2, 3.3, 3.4) we have:

\[
\left(\begin{array}{c} 24 \text{ 3-shs} \\ \frac{53}{156} \end{array} \right) \left[\begin{array}{c} 0 \text{ shs} \\ \frac{66}{156} \end{array} \right] \left(\begin{array}{c} 62 \text{ 2-shs} \\ \frac{69}{156} \end{array} \right) \quad \left(\begin{array}{c} 103 \\ \frac{103}{156} \end{array} \right)
\]
The Buddy-Match Method

\[
\begin{align*}
&\left(\begin{array}{c}
53 \\
156
\end{array} \right)[0 \begin{array}{c}
66 \\
156
\end{array}]\left(\begin{array}{c}
69 \\
156
\end{array} \right) \\
&\left(\begin{array}{c}
87 \\
156
\end{array} \right)\left(\begin{array}{c}
103 \\
156
\end{array} \right)
\end{align*}
\]

\[\left| \left(\begin{array}{c}
53 \\
156
\end{array} , \begin{array}{c}
69 \\
156
\end{array} \right) \right| = 24\]

\[\left| B\left(\begin{array}{c}
53 \\
156
\end{array} , \begin{array}{c}
69 \\
156
\end{array} \right) \right| = \left| \begin{array}{c}
87 \\
156
\end{array} , \begin{array}{c}
103 \\
156
\end{array} \right| = 24\]

\[\left| M\left(\begin{array}{c}
87 \\
156
\end{array} , \begin{array}{c}
103 \\
156
\end{array} \right) \right| = \left| \begin{array}{c}
69 \\
156
\end{array} , \begin{array}{c}
85 \\
156
\end{array} \right| = 24\]

\[\left| \left(\begin{array}{c}
53 \\
156
\end{array} , \begin{array}{c}
69 \\
156
\end{array} \right) \cup \left(\begin{array}{c}
69 \\
156
\end{array} , \begin{array}{c}
85 \\
156
\end{array} \right) \cup \left(\begin{array}{c}
87 \\
156
\end{array} , \begin{array}{c}
103 \\
156
\end{array} \right) \right| = 24 \times 3 = 72\]

\[\left| \left(\begin{array}{c}
85 \\
156
\end{array} , \begin{array}{c}
87 \\
156
\end{array} \right) \right| = 86 - 72 = 14.\]
More Buddy-Match Method

\[\left| \left(\frac{85}{156}, \frac{87}{156} \right) \right| = 14. \text{ Buddy-Match yields } \left| \left(\frac{53}{156}, \frac{55}{156} \right) \right| = 14 \]

\[\left| \left[\frac{66}{156}, \frac{69}{156} \right] \right| = 0. \text{ Buddy-Match yields } \left| \left[\frac{55}{156}, \frac{58}{156} \right] \right| = 0. \]

The following picture captures what we know so far about 3-shares.

\[
\begin{pmatrix}
\frac{53}{156} & 14 \\
\frac{55}{156} & 0
\end{pmatrix}
\begin{pmatrix}
\frac{58}{156} \\
\frac{66}{156}
\end{pmatrix}
\]
Big Shares and Small Shares

\[\begin{pmatrix} 14 & 0 \\ \frac{53}{156} & \frac{55}{156} \end{pmatrix} \begin{pmatrix} 10 \\ \frac{58}{156} & \frac{66}{156} \end{pmatrix} \]

- Shares in \(\left(\frac{53}{156}, \frac{55}{156} \right) \) are small shares;
- Shares in \(\left(\frac{58}{156}, \frac{66}{156} \right) \) are large shares;

Notation \(d_i \) is numb of students who have \(i \) small shares (\(3 - i \) large shares).

\[
d_0 = 0 \text{ since } 3 \times \frac{58}{156} = \frac{174}{156} > \frac{172}{156} = \frac{43}{39}.
\]

\[
d_3 = 0 \text{ since } 3 \times \frac{55}{156} = \frac{165}{156} < \frac{172}{156} = \frac{43}{39}.
\]

SO there are NO \(d_0 \)-students or \(d_3 \)-students.
d_1 and d_2 Students Cause a Gap!

\[
\begin{pmatrix}
\frac{53}{156} & 14 \\
\frac{55}{156} & 0 \\
\frac{58}{156} & 10
\end{pmatrix}
\begin{pmatrix}
\frac{156}{156} \\
\frac{156}{156} \\
\frac{156}{156}
\end{pmatrix}
\]

d_1: If a d_1-student has a large shares $\geq \frac{61}{156}$ then he will have

\[
\frac{53}{156} + \frac{58}{156} + \frac{61}{156} = \frac{172}{156} = \frac{43}{39}.
\]

Upshot: Large shares of d_1-student are in \((\frac{58}{156}, \frac{61}{156})\).

d_2: If a d_2-student has a large shares $\leq \frac{62}{156}$ then he will have

\[
\frac{55}{156} + \frac{55}{156} + \frac{62}{156} = \frac{172}{156} = \frac{43}{39}.
\]

Upshot: Large shares of a d_2-student are in \((\frac{62}{156}, \frac{66}{156})\).

Upshot Upshot: There are NO shares in $[\frac{61}{156}, \frac{62}{156}]$.
Even More Buddy Match

The following picture captures what we know so far about 3-shares.

\[
\begin{pmatrix}
\frac{53}{156} & 14 & 0 \\
\frac{55}{156} & 5 & 0 \\
\frac{58}{156} & x & 0 \\
\frac{61}{156} & y & 0
\end{pmatrix}
\]

\[x + y = 10.\]

Use Buddy-Match to show that \[|\left(\frac{58}{156}, \frac{61}{156}\right)| = |\left(\frac{63}{156}, \frac{66}{156}\right)|\] so they are both 5.

\[
\begin{pmatrix}
\frac{53}{156} & 14 & 0 \\
\frac{55}{156} & 5 & 0 \\
\frac{58}{156} & 5 & 0 \\
\frac{61}{156} & 5 & 0
\end{pmatrix}
\]
Only the d_2-students use $\left(\frac{63}{156}, \frac{66}{156} \right)$. Every d_2 student uses one share from that interval:

$$d_2 = 5.$$

Each d_i student uses i shares from $\left(\frac{53}{156}, \frac{55}{156} \right)$:

$$1 \times d_1 + 2 \times d_2 = 14 : \text{ So } d_1 = 4$$

There are 8 3-students:

$$d_1 + d_2 = 8 : \text{ So } 5 + 4 = 8. \text{CONTRADICTION!}$$
Summary of All of Our Results: Actual Numbers

1. For $1 \leq s \leq 50$ and $s + 1 \leq m \leq 60$ we have all $f(m, s)$ except

$$\frac{49}{114} \leq f(41, 19) < \frac{983}{2280}$$

$$f(48, 37) < \frac{103}{296}$$

$$f(50, 41) < \frac{59}{164}$$

2. A computer program that, on input m, s uses our theorems to find α with $f(m, s) \leq \alpha$ and then tries to prove $f(m, s) \geq \alpha$ using linear algebra.

3. A Mixed Int Program for $f(m, s)$ which is too slow. Oh well.
1. For all $m \geq s$ $f(m, s) \geq \frac{1}{3}$.
2. Formulas for $f(m, s)$ for $1 \leq s \leq 7$. They are Mod s patterns.
3. For $s = 8, \ldots, 100$ conjectures for $f(m, s)$. $f(m, s)$ seems to be a mod s pattern.
4. Formulas for $f(s + d, s)$ for $1 \leq d \leq 7$ and a methodology to find more (Buddy Match). Seems to have a be a mod $3d$ pattern.
5. A computer program that, on input m, s uses our theorems to find α with $f(m, s) \leq \alpha$ and then tries to prove $f(m, s) \geq \alpha$ using linear algebra.
Summary of our Results-Theorems

1. Floor Ceiling THEOREM, Interval THEOREM, Buddy Match METHODOLOGY to generate theorems.

2. For fixed s, for $m \geq \frac{s^3 + 2s^2 + s}{2}$ $f(m, s)$ matches the Floor-ceiling bound.

3. $f(m, s)$ always exists and is rational. Provable by compactness argument OR a large number of Linear Programs, OR one MIP. The last two proofs also give that $f(m, s)$ is computable.

4. Computer Generated Theorems like the following:
 For all $k \geq 0$, $f(21k + 11, 21k + 4) = \frac{7k + X}{21k + 4}$ where $X = \frac{9}{5}$.

5. Computer Generated Theorems like the following:
 If $1 \leq a \leq \frac{5d}{7}$, $a \neq \frac{d}{2}$, then $f(3dk + a + d, 3dk + a) \leq \frac{X}{156}$
 where $X \geq \max\{\frac{2a - d}{3}, \frac{7a - 2d}{8}, \frac{2a}{5}, \frac{a + d}{7}, \frac{4a - d}{5}, \frac{a + 2d}{10}\}$.
A Surely True But Really Strange Conjecture

We showed results like:

\[(\forall k \geq 0)[f(3dk + a + d, 3dk + a) \leq \frac{dk + X}{3dk + a} \text{ where } X = BLAH].\]

\(X\) is independent of \(k\).

We conjectured the correct \(X\) by looking at \(k = 0\) case that we already knew.

We proved theorem for \(k \geq 1\) using Buddy-Match (did not apply to \(k = 0\) case).

Have theorem that works for \(k = 0\) with one proof, \(k = 1\) with another.
A Surely True But Really Strange Conjecture

We showed results like:

\[(\forall k \geq 0)[f(3dk + a + d, 3dk + a) \leq \frac{dk + X}{3dk + a} \text{ where } X = BLAH].\]

\((X \text{ is independent of } k)\)

We conjectured the correct \(X\) by looking at \(k = 0\) case that we already knew.

We proved theorem for \(k \geq 1\) using Buddy-Match (did not apply to \(k = 0\) case).

Have theorem that works for \(k = 0\) with one proof, \(k = 1\) with another.

Conjecture For all \(a, d\) with \(1 \leq a < d\), \(a, d\) relatively prime, there exists a constant \(X\) such that

\[(\forall k \geq 0)[f(3dk + a + d, 3dk + a) \leq \frac{X}{156} \text{ where } X = BLAH }.\]

(Exception when \(k = 0\) and \(a = 1\) when \(f(d + 1, 1) = 1\).)

Very Strange that so far this has ALWAYS held even though proof for \(k = 0\) and \(k > 1\) totally different!)
Consider:
Given m, s in binary, compute $f(m, s)$.

1. Is the problem in P? We keep on finding techniques that we think cover all cases (so it would be in P) but then finding a case not covered.
2. Is it in NP? The procedure might be very large compared to the input.
3. Is it NP-complete or NP-hard?
4. Given m, s is there a bound on the denominators of the sizes of shares used?
Conjectures that are surely True

1. \(f(m, s) \) has mod \(s \) pattern (known for large \(m \)).
2. \(f(s + d, s) \) has mod 3\(d \) pattern.
3. \(f(m, s) \) only depends on \(m/s \).
Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

▶ 4 High School students (Guang, Naveen, Naveen, Sunny)

▶ 3 college student (Erik, Jacob, Daniel)

▶ 1 professor (John D)

that the most important field of Mathematics is Muffinry.
Accomplishment I Am Most Proud of:

Convinced

- 4 High School students (Guang, Naveen, Naveen, Sunny)
- 3 college student (Erik, Jacob, Daniel)
- 1 professor (John D)

that the most important field of Mathematics is **Muffinry**.