1 Introduction and Definitions

The following definition is basic to Kolmogorov complexity (see [?]).

Def 1.1 Let x be a string of length n.

1. $C(x)$ is the size of the smallest program that outputs x. This is the Kolmogorov complexity of x. (Note-to formalize this we would need so specify what a program is; however, the Kolmogorov complexity of a string changes by only a constant when you change programming systems.)

2. We define $C_s(x)$ to be an approximation to C after s steps. Formally we define $C_0(x) = n + O(1)$ since without any work you know there is a program that stores x and prints it. (The $O(1)$ depends on the particular programming system.) $C_s(x)$ is obtained by running the first s Turing machines for s steps on 0; if any of them prints x and has size $\leq C_{s-1}(x)$ then output the size of the smallest such machine.

Intuitively a function f is m-enumerable if there is a process that, on input x, enumerates $\leq m$ candidates for $f(x)$ one of which really is $f(x)$. We formalize this.

Notation 1.2 W_e is the domain of the eth Turing machine, so W_0, W_1, \ldots is a list of all c.e. sets. W_e^A is the domain of the eth oracle Turing machine using oracle A, so W_0^A, W_1^A, \ldots is a list of all c.e.-in-A sets.

Def 1.3 [1, 2] Let $m \geq 1$ and let $A \subseteq \mathbb{N}$.

1. f is m-enumerable if there is a computable function h such that

 $$(\forall x)[|W_h(x)| \leq m \land f(x) \in W_h(x)].$$

2. f is m-enumerable-in-A if there is a computable function h such that

 $$(\forall x)[|W_h^A(x)| \leq m \land f(x) \in W_h^A(x)].$$
3. EN$^A(m)$ is the class of all m-enumerable-in-A functions.

We need the following definition and theorem from computability theory.

Def 1.4 Let f be a partial function and F be a total function. f is *dominated by F* if, for every x such that $f(x)$ exists, $f(x) < F(x)$. f is *computably dominated* if there is a computable function F such that f is dominated by F.

Def 1.5 [3] A set X is *extensive* if, for every computably dominated partial computable function f, there is a total function $g \leq_T X$ such that g extends f.

Lemma 1.6 [3] Let A be a set. There exists a set X such that the following hold.

1. $A \leq_T X$.
2. $K \leq_T X \rightarrow K \leq_T A$.
3. X is extensive.

We need the following definition and theorem from bounded queries.

Def 1.7 Let $k \in \mathbb{N}$ and $D \subseteq \mathbb{N}$. Then $\#^D_k(x_1, \ldots, x_k) = |D \cap \{x_1, \ldots, x_k\}|$.

Lemma 1.8 [1, 2] Let $k \in \mathbb{N}$. If $\#^K_k \in \text{EN}^A(k)$ then $K \leq_T A$.

Note 1.9 Kummer showed [4] that, for all D, $\#^D_k \in \text{EN}^A(k)$ then $D \leq_T A$.

We need the following easy lemma and corollary from kolmogorov theory. They are both folklore; we include their proofs for completeness.

Lemma 1.10 Let $a, b \in \mathbb{N}$ such that $a + 1 \leq b$. Let G be a set of at least 2^b strings. Then there exists at least 2^a strings $w \in G$ such that $C(w) \geq a$.

2
Proof: Assume, by way of contradiction, that
\[|\{ w \in G : C(w) \geq a \} | < 2^a. \]

Note that \[|\{ w \in G : C(w) < a \} | \leq |\{ w \in G : C(w) \geq a \} | + |\{ w \in G : C(w) < a \} | \leq 2^{a-1} + \cdots + 2^0 = 2^a - 1. \]

Hence
\[2^b \leq |G| = |\{ w \in G : C(w) < a \} | + |\{ w \in G : C(w) \geq a \} | \leq 2^a - 1 + 2^a < 2^{a+1}. \]

This implies \(b < a + 1 \) which contradicts the hypothesis that \(a + 1 \leq b. \)

Corollary 1.11 Let \(i, m \in \mathbb{N}. \) If \(G \) is a set of \(2^{m-(i-1)\lceil \sqrt{m} \rceil} \) strings then there exists at least \(2^{m-i\lceil \sqrt{m} \rceil + \lceil m^{1/3} \rceil} \) strings \(w \in G \) such that \(C(w) \geq m - i\lceil \sqrt{m} \rceil + \lceil m^{1/3} \rceil. \)

Proof: Apply Lemma 1.10 with \(a = m - i\lceil \sqrt{m} \rceil + \lceil m^{1/3} \rceil \) and \(b = m - (i - 1)\lceil \sqrt{m} \rceil. \)

2 An Easy Theorem about \(C \)

Theorem 2.1 \(C \leq_{tt} K \) and \(K \leq_T C. \)

Proof:
1) \(C \leq_{tt} K. \) Given \(x \) we can compute \(C(x) \) as follows. For all machines \(M \) of length \(\leq |x| + O(1) \) ask \(K \) “does \(M(0) \) halt and output \(x? \)” Once you get the answers, output the length of the shortest such \(M \) for which the answer was YES.

2) \(K \leq_T C. \) We need to look at the partial computable function \(f \) below:
\(f: \) On input \(x \) find \(s \) such that \(x \in K_s - K_{s-1} \) (this might not happen). Let \(|x| = n \) and \(m = 2^n. \) Find \(C_s(z) \) for every \(z \) of length \(m. \) Output the \(z \) with the largest \(C_s \)-value (break ties lexicographically). Note the following:

If \(x \in K, z = f(x), \) and \(s \) is such that \(z \in K_s - K_{s-1} \) then the following hold.
\(C_s(z) \geq |z| = m + O(1) \) (since \(\exists z', |z'| = m \) \(C(z') \geq m + O(1) \)).

\(C(z) \leq \log m + O(1) \) (since \(z \) can be computed from the code for \(f \) and the input \(x, |x| = n = \log m. \))
Here is the key: If \(x \in K_s - K_{s-1} \) then there exists a string \(z = f(x) \) of length \(m \) such that \(C_s(z) > C(z) \). Hence, if \(s \) is such that \((\forall z)[|z| = m \rightarrow C_s(z) = C(z)] \) then \(x \in K \text{ iff } x \in K_s \). Using this we have the following algorithm for \(K \leq_T C \).

Let \(K \leq_T C \): on input \(x \), let \(|x| = n \) and \(m = 2^n \). Find \(C(z) \) for all \(z \in \{0,1\}^m \). Find \(s \) such that, for all \(z \in \{0,1\}^m \), \(C_s(z) = C(z) \). If \(x \in K_s \) then output YES, otherwise output NO.

\[\text{Note 2.2 Kummer has shown that } K \leq_T C [5]. \]

3 Main Theorem

Theorem 3.1 Let \(k \in \mathbb{N} \). If \(C \in EN^A(k) \) then \(K \leq_T A \).

Proof:

Let \(C \in EN^A(k) \) via \(h \). Note that \(h \) is computable. We will not use \(h \) until later.

By Lemma 1.6 there exists a set \(X \) such that \(A \leq_T X, K \leq_T X \to K \leq_T A \), and \(X \) is extensive (Definition 1.5). We show that \(\#^K_k \in EN^X(()k) \), hence by Lemma 1.8, \(K \leq_T X \); so \(K \leq_T A \).

We need to define \(k+1 \) partial computable functions on ordered \(k \)-tuple \((x_1, . . . , x_k)\). We assume throughout that \(\sum_{i=1}^{k} |x_i| = n \) and that \(m = 2^n \).

\[f_0(x_1, . . . , x_k) = \{0,1\}^m. \]

For \(1 \leq i \leq k \), \(f_i(x_1, . . . , x_k) \) is defined as follows: find the least \(s \) such that \(\#_k^s(x_1, . . . , x_k) = i \) (this might not ever happen). Compute \(C_s(z) \) for every \(z \in f_{i-1}(x_1, . . . , x_k) \). Order the strings by largest to smallest value of \(C_s \) (break ties via lexicographic ordering). Output the highest ranked \(2^{m-i[\sqrt{m}]} \) strings.

Clearly \(f_0, \ldots , f_k \) are partial computable functions that are computably dominated. Hence, for each \(i, 0 \leq i \leq k \), there exists total \(g_i \leq_T X \) such that \(g_i \) extends \(f_i \). We may assume that, for all \((x_1, . . . , x_k)\), for all \(i \), \(g_i(x_1, . . . , x_k) \) is a set of size \(2^{m-i[\sqrt{m}]} \). In particular, it is not empty.

Claim 0: Let \((x_1, . . . , x_k) \in \mathbb{N} \). If there exists \(i, 1 \leq i \leq k \), such that \(g_i(x_1, . . . , x_k) \not\subseteq g_{i-1}(x_1, . . . , x_k) \) then \(\#^K_k(x_1, . . . , x_k) \neq k \).

Proof: We prove the contrapositive. If \(\#^K_k(x_1, . . . , x_k) = k \) then, for \(i, 0 \leq i \leq k \), \(f_i(x_1, . . . , x_k) = g_i(x_1, . . . , x_k) \). Hence, for all \(i, 1 \leq i \leq k \), \(g_i(x_1, . . . , x_k) \subseteq g_{i-1}(x_1, . . . , x_k) \).
Claim 1: Let $n \in \mathbb{N}$. Let $x_1, \ldots, x_k \in \mathbb{N}$ be such that $\sum_{i=1}^{k} |x_i| = n$. Let $m = 2^n$. We assume that for all $i, 1 \leq i \leq k$, $g_i(x_1, \ldots, x_k) \subseteq g_{i-1}(x_1, \ldots, x_k)$. For $1 \leq i \leq k$ define

$$s_i = \begin{cases} \text{the least } s \text{ such that } \#_{k}^{s}(x_1, \ldots, x_k) = i & \text{if } \#_{k}^{s}(x_1, \ldots, x_k) \geq i; \\ \infty & \text{otherwise.} \end{cases}$$

For all $i, 1 \leq i \leq k$, if $s_i < \infty$ then

1. $(\forall z \in g_i(x_1, \ldots, x_k))|C_{s_i}(z)| \geq m - i \left\lceil \sqrt{m} \right\rceil + \left\lceil m^{1/3} \right\rceil$, and
2. $(\forall z \in g_i(x_1, \ldots, x_k))|C(z)| \leq m - i \left\lceil \sqrt{m} \right\rceil + 2 \log m + O(1)$.

Proof: Let i be such that $s_i < \infty$. Note that, for all $1 \leq j \leq i$, $f_j(x_1, \ldots, x_k)$ exists, so $g_j(x_1, \ldots, x_k) = f_j(x_1, \ldots, x_k)$. Let $z \in g_i(x_1, \ldots, x_k)$.

(1) We show that $C_{s_i}(z) \geq m - i \left\lceil \sqrt{m} \right\rceil + \left\lceil m^{1/3} \right\rceil$. Since $|g_{i-1}(x_1, \ldots, x_k)| = 2^{m-(i-1)\left\lceil \sqrt{m} \right\rceil}$, by Corollary 1.11, there are at least $2^{m-i\left\lceil \sqrt{m} \right\rceil + m^{1/3}}$ strings $w \in g_{i-1}(x_1, \ldots, x_k)$ such that $C(w) \geq m - i \left\lceil \sqrt{m} \right\rceil + \left\lceil m^{1/3} \right\rceil$; hence, $C_{s_i}(w) \geq C(w) \geq m - i \left\lceil \sqrt{m} \right\rceil + \left\lceil m^{1/3} \right\rceil$. Since $z \in g_i(x_1, \ldots, x_k)$, $C_{s_i}(z)$ is in the top $2^{m-i\left\lceil \sqrt{m} \right\rceil}$ of $g_{i-1}(x_1, \ldots, x_k)$ in terms of C_{s_i}-complexity. Hence $C_{s_i}(z) \geq m - i \left\lceil \sqrt{m} \right\rceil + \left\lceil m^{1/3} \right\rceil$.

(2) We show that $C(z) \leq m - i \sqrt{m} + 2 \log m + O(1)$.

Given (x_1, \ldots, x_k) one can produce $f_i(x_1, \ldots, x_k)$ as follows: Let $f_0(x_1, \ldots, x_m) = \{0, 1\}^{k}$. For $1 \leq j \leq i$ do the following: find the least s such that $\#_{k}^{s}(x_1, \ldots, x_k) = j$, rank all the strings in $\{0, 1\}^{m}$ via their C_{s} complexity (break ties via lexicographic ordering), and let $f_{j}(x_1, \ldots, x_k)$ be the top $2^{m-i\sqrt{m}}$ strings in $f_{j-1}(x_1, \ldots, x_k)$.

Given the lexicographic rank of z in $f_i(x_1, \ldots, x_k)$ one can easily produce z from $f_i(x_1, \ldots, x_k)$.

Hence, to describe z, you need (x_1, \ldots, x_k) and the lexicographic rank r of z in $f_i(x_1, \ldots, x_k)$. The space needed for (x_1, \ldots, x_k) is $2n$ (use the standard trick of encoding 0 by 00, 1 by 11, and commas by 01). Note that $2n = 2 \log m$. The space needed for r is $\log|f_i(x_1, \ldots, x_k)| = \log(2^{m-i\sqrt{m}}) = m - i\sqrt{m}$. Hence the total description is size $m - i\sqrt{m} + 2 \log m + O(1)$.

Claim 2: For almost all k-tuples $(x_1, \ldots, x_k) \in \mathbb{N}$, if $z \in g_k(x_1, \ldots, x_k)$, and s is the least stage such that $C_{s}(z) = C(z)$, then $\#_{k}^{s}(x_1, \ldots, x_k) = \#_{k}^{s}(x_1, \ldots, x_k)$.
Proof: If \(\#_k^K(x_1, \ldots, x_k) = 0 \) then the claim is obvious. Let \(s_1, \ldots, s_k \) be as in Claim 1. By Claim 1, if \(\#_k^K(x_1, \ldots, x_k) = i \), and \(\sum_{i=1}^k |x_i| \) is large enough, then \(C_{s_i}(z) > C(z) = C_s(z) \), hence \(s > s_i \). Therefore \(\#_k^K(x_1, \ldots, x_k) = \#_k^{K_s}(x_1, \ldots, x_k) \).

We now give an algorithm for \(\#_k^K(x_1, \ldots, x_k) \in EN^X(k) \). The algorithm uses \(h \) (recall that \(C \in EN^A(k) \) via \(h \) and \(h \) is computable), and \(g_1, \ldots, g_k \leq_T X \). The algorithm works for almost all \(k \)-tuples; however, one can easily code the finite information needed to make it always work.

1. **Input** \((x_1, \ldots, x_k)\).
2. For \(0 \leq i \leq k \) compute \(g_i(x_1, \ldots, x_k)\).
3. If there exists \(i, 1 \leq i \leq k \), such that \(g_i(x_1, \ldots, x_k) \nsubseteq g_{i-1}(x_1, \ldots, x_k) \) then output \(\{0, 1, \ldots, k - 1\} \) and stop. (This is correct by Claim 0.)
4. (Assume \(g_k(x_1, \ldots, x_k) \subseteq \cdots \subseteq g_0(x_1, \ldots, x_k) \).) Let \(z \) be the lexicographic least element of \(g_k(x_1, \ldots, x_k) \) (such a \(z \) must exist since \(g_k(x_1, \ldots, x_k) \) is not empty). Enumerate \(W^A_{h(z)} \). For each number enumerated we might output a candidate for \(\#_k^K(x_1, \ldots, x_k) \). Assume \(W^A_{h(z)} \) enumerates \(c \). Find the least \(s \) such that \(C_s(z) = c \) (this will happen if \(c = C(z) \) but might not happen otherwise). Output \(\#_k^{K_s}(x_1, \ldots, x_k) \). If \(c = C(z) \) then, by Claim 2, \(\#_k^K(x_1, \ldots, x_k) = \#_k^{K_s}(x_1, \ldots, x_k) \).

Note that (1) for every number enumerated by \(W^A_{h(z)} \) our algorithm may output a candidate for \(\#_k^K(x_1, \ldots, x_k) \), and (2) when the correct value of \(C(z) \) is enumerated by \(W^A_{h(z)} \) our algorithm outputs the correct value for \(\#_k^K(x_1, \ldots, x_k) \). Hence \(\#_k^K \in EN^X(k) \).

References

