Constructions in Computable Ramsey Theory
(An Exposition)

William Gasarch-U of MD
Notation

Notation:

1. \(M_1, M_2, \ldots \) is a standard list of Turing Machines.
2. Note that from \(e \) we can extract the code for \(M_e \).
3. \(M_{e,s}(x) \) means that we run \(M_e \) for \(s \) steps.
4. \(W_e \) is the domain of \(M_e \), that is,
 \[
 W_e = \{ x \mid (\exists s)[M_{e,s}(x) \downarrow] \}.
 \]
 Note that \(W_1, W_2, \ldots \) is a list of ALL c.e. sets.
5. \(W_{e,s} = \{ x \mid M_{e,s}(x) \downarrow \} \).
There exists computable $COL : \binom{\mathbb{N}}{2} \rightarrow [2]$ such that there is NO infinite c.e. homog set.
We construct $COL : \binom{\mathbb{N}}{2} \to [2]$ to satisfy:

$$R_e : W_e \text{ infinite} \implies W_e \text{ NOT a homog set}.$$

CONSTRUCTION OF COLORING

Stage 0: COL is not defined on anything.

Stage s: We will define $COL(0, s), COL(1, s), \ldots, COL(s - 1, s)$.

For all $0 \leq e \leq s$ do the following, starting with $e = 0$:

If $(\exists x, y \leq s - 1)[x, y \in W_{e,s} \land COL(x, s), COL(y, s) \text{ undefined}]$ then define take LEAST such x, y and do:

1. $COL(x, s) = RED$,
2. $COL(y, s) = BLUE$. (Note that IF $s \in W_e$ then R_e would be satisfied.)

After all this, for all (x, s) not yet colored, $COL(x, s) = RED$.

END OF CONSTRUCTION
There is a Comp Coloring with no Inf c.e.-in-HALT Homog Set

Theorem

There exists computable \(\text{COL} : \binom{N}{2} \rightarrow [2] \) such that there is no infinite c.e-in-HALT homog set.

This is on HW1.
Every Comp Coloring has inf Π_2 Homog Set

Theorem

For every computable coloring $COL : \binom{\mathbb{N}}{2} \to [2]$ there is an infinite Π_2 homog set.
Construction of Inf Π_2 Homog Set

Given computable $COL : (\mathbb{N}_2) \to [2]$.

CONSTRUCTION of x_1, x_2, \ldots **and** c_1, c_2, \ldots.

$x_1 = x$ and $c_1 = RED$ (We are guessing. Might change later)

$s \geq 2$, assume x_1, \ldots, x_{s-1} and c_1, \ldots, c_{s-1} are defined.

Ask $HALT \left((\exists x \geq x_{s-1}) (\forall 1 \leq i \leq s - 1) [COL(x_i, x) = c_i] \right)$?

YES: Find least such x.

- $x_i = x$
- $c_i = RED$ (Guessing.)
Construction of Inf Π_2 Homog Set: NO Case

NO: Ask $HALT$:

1. $(\exists x \geq x_{s-1})(\forall 1 \leq i \leq s-2)[COL(x_i, x) = c_i]$?
2. $(\exists x \geq x_{s-1})(\forall 1 \leq i \leq 1)[COL(x_i, x) = c_i]$?

Let i_0 be largest such that

$(\exists x \geq x_{s-1})(\forall 1 \leq i \leq i_0)[COL(x_i, x) = c_i]$?

1. Change color of c_{i+1}.
2. Wipe out x_{i+2}, \ldots, x_{s-1}.
3. Find $x \geq x_{s-1}$ such that $(\forall 1 \leq i \leq i_0)[COL(x_i, x) = c_i]$
4. $x_{i+2} = x$. $c_{i+2} = RED$ (Guessing)

END OF CONSTRUCTION of $x_1, x_2 \ldots$ and c_1, c_2, \ldots
Getting the Inf Π_2 Homog Set

$X = \{ x_1, x_2, \ldots \}$. R is the set of red elts of X

$\overline{X} \in \Sigma_2$ (so $X \in \Pi_2$).

$\overline{X} = \{ x \mid (\exists s)[\text{at stage } s \text{ of the construction } x \text{ was tossed out}] \}$.

$\overline{R} \in \Sigma_2$ (so $R \in \Pi_2$).

$\overline{R} = \overline{X} \cup \{ x \mid (\exists x)[\text{at stage } s \text{ of the construction } x \text{ was turned BLUE}] \}$.

1. If R is infinite then R is inf homog set in Π_2.
2. If R is finite then $B = X - R$ is inf homog set in Π_2.