Computability Theory and Ramsey Theory
An Exposition by William Gasarch

All of the results in this document are due to Jockusch [?].

1 A Computable Coloring with NO Infinite c.e. Homog Sets

All of the results in this

Notation 1.1

1. M_1, M_2, \ldots is a standard list of Turing Machines.

2. Note that from e we can extract the code for M_e.

3. $M_{e,s}(x)$ means that we run M_e for s steps.

4. W_e is the domain of M_e, that is,

$$W_e = \{x \mid (\exists s)[M_{e,s}(x) \downarrow]\}.$$

Note that W_1, W_2, \ldots is a list of ALL c.e. sets.

5.

$$W_{e,s} = \{x \mid M_{e,s}(x) \downarrow\}.$$

Theorem 1.2 There exists a computable $COL : \binom{\mathbb{N}}{2} \rightarrow [2]$ such that there is NO infinite c.e. homog set.

Proof: We construct $COL : \binom{\mathbb{N}}{2} \rightarrow [2]$ to satisfy the following requirements (NOTE- requirements is the most important word in computability theory.)
$R_e : W_e \text{ infinite } \implies W_e \text{ NOT a homog set}.$

CONSTRUCTION OF COLORING

Stage 0: COL is not defined on anything.

Stage s: We define $COL(0, s), \ldots, COL(s - 1, s)$. For $e = 0, 1, \ldots, s$:

If this occurs:

\[(\exists x, y \leq s - 1)[x, y \in W_{e,s} \land COL(x, s), COL(y, s) \text{ undefined}]\]

then take the LEAST two x, y for which this is the case and do the following:

- $COL(x, s) = RED$
- $COL(y, s) = BLUE$.

(Note that IF $s \in W_e$ (which we do not know at this time) then R_e would be satisfied.)

After you to through all of the $0 \leq e \leq s$ define all other $COL(x, y)$ where $0 \leq x < y \leq s$ that have not been defined by $COL(x, y) = RED$. This is arbitrary. The important things is that ALL $COL(x, s)$ where $0 \leq x \leq s - 1$ are now defined. This is why COL is computable— at stage s we have defined all $COL(x, y)$ with $0 \leq x < y \leq s$.

END OF CONSTRUCTION

We show that each requirement is eventually satisfied.

For pedagogue we first look at R_1.

If W_1 is finite then R_1 is satisfied.

Assume W_1 is infinite. We show that R_1 is satisfied. Let $x < y$ be the least two elements in W_1. Let s_0 be the least number such that $x, y \in W_{1,s_0}$ Note that, for ALL $s \geq s_0$ you will have $COL(x, s) = RED$
\[\text{COL}(y,s) = \text{BLUE} \]

Since \(W_1 \) is infinite there is SOME \(s \geq s_0 \) with \(s \in W_e \). Hence \(x, y, s \in W_1 \) and show that \(W_1 \) is NOT homogenous.

Can we show \(R_2 \) is satisfied the same way? Yes but with a caveat- we won’t use the least two elements of \(W_2 \). We’ll use the least two elements of \(W_2 \) that are bigger than the least two elements of \(W_1 \). We now do this rigorously and more generally.

Claim: For all \(e \), \(R_e \) is satisfied:

Proof: Fix \(e \). If \(W_e \) is finite then \(R_e \) is satisfied.

Assume \(W_e \) is infinite. We show that \(R_e \) is satisfied. Let \(x_1 < x_2 < \cdots < x_{2e} \) be the first (numerically) \(2e \) elements of \(W_e \). Let \(s_0 \) be the least number such that

- \(x_1, \ldots, x_{2e} \in W_{e,s_0} \), and
- For all \(x \in \{x_1, \ldots, x_{2e}\} \), for all \(1 \leq i \leq e - 1 \), if \(x \in W_i \) then \(x \in W_{i,s_0} \).

KEY: for all \(s \geq s_0 \), during stage \(s \), the requirements \(R_1, \ldots, R_{e-1} \) may define \(\text{COL}(x,s) \) for some of the \(x \in \{x_1, \ldots, x_{2e}\} \). But they will NOT define \(\text{COL}(x,s) \) for ALL of those \(x \). Why? Because \(R_i \) only defines \(\text{COL}(x,s) \) for at most TWO of those \(x \)'s, and there are \(e - 1 \) such \(i \), so at most \(2e - 2 \) of those \(x \)'s have \(\text{COL}(x,s) \) defined. Hence there will exist \(x, y \) such that \(R_e \) gets to define \(\text{COL}(x,s) \) and \(\text{COL}(y,s) \). Furthermore, they will always be the SAME \(x, y \) since the \(R_i \) with \(i < e \) have already made up their minds about the \(x \) in \(\{x_1, \ldots, x_{2e}\} \).

UPSHOT: There exists \(x, y \in W_e \) such that, for all \(s \geq s_0 \),

\[
\text{COL}(x,s) = \text{RED} \\
\text{COL}(y,s) = \text{BLUE}
\]

Since \(W_e \) is infinite there is SOME \(s \geq s_0 \) with \(s \in W_e \). Hence \(x, y, s \in W_e \) and show that \(W_e \) is NOT homogenous.
2 A Computable Coloring with NO c.e.-in-K Homog Sets

Notation 2.1

1. If \(A \) is a c.e. set, say \(A \) is the domain of \(M \), then \(A_s \) is \(\{ x \leq s \mid M_{e,s}(x) \downarrow \} \). Note that, given \(s \), one can compute \(A_s \).

2. \(M_1^{(0)}, M_2^{(0)}, \ldots \) is a standard list of oracle Turing Machines.

3. Note that from \(e \) we can extract the code for \(M_e^{(0)} \).

4. If \(A \) is a c.e. set then \(M_{e,s}^A(x) \) means that we run \(M_e^{(0)} \) for \(s \) steps and using \(A_s \) for the oracle.

5. If \(A \) is c.e. then \(W_e^A \) is the domain of \(M_e^A \).

\[
W_e^A = \{ x \mid (\exists s)[M_{e,s}^A(x) \downarrow] \}.
\]

Note that \(W_1^K, W_2^K, \ldots \) is a list of ALL c.e-in-K sets.

6.

\[
W_{e,s}^{A_s} = \{ x \mid M_{e,s}^{A_s}(x) \downarrow \}.
\]

Theorem 2.2 There exists \(COL : \binom{N}{2} \rightarrow [2] \) such that there is NO infinite c.e-in-K homog set.

Proof sketch: This will be a HW. But note that its very similar to the proof of Theorem 1.2— if \(W_e^K \) is infinite then eventually \(W_{e,s}^{K^e} \) will settle down on its first \(2e \) elements.

3 A Computable Coloring with NO \(\Sigma_2 \) Homog Sets

We state equivalences of both c.e. and c.e.-in-K. We leave the proofs to the reader.

Theorem 3.1 Let \(A \) be a set. The following are equivalent:
1. There exists e such that $A = W_e$. (A is c.e.)

2. There exists a decidable R such that

 $$A = \{ x \mid (\exists y)(x, y) \in R \}. $$

 (A is Σ^1_1.)

3. There exists e such that

 $$A = \{ x \mid (\exists y, s)[M_{e,s}^{K}(y) = x] \}. $$

 (This is the origin of the phrase ‘computably ENUMERABLE’.)

Theorem 3.2 Let A be a set. The following are equivalent:

1. There exists e such that $A = W_e^K$. (A is c.e.-in-K.)

2. There exists a decidable-in-K R such that

 $$A = \{ x \mid (\exists y)(x, y) \in R \}. $$

 (A is Σ^K_1.)

3. There exists e such that

 $$A = \{ x \mid (\exists y, s)[M_{e,s}^{K}(y) = x] \}. $$

 (This is the origin of the phrase ‘computably ENUMERABLE-in-K’.)

We also need to know that K is quite powerful:

Def 3.3 If A, B are sets then $A \leq_m B$ means that there exists a computable f such that

 $$x \in A \iff f(x) \in B.$$
We leave the proof of the following to the reader.

Theorem 3.4 If A is c.e. then $A \leq_m K$.

The key use of the above theorem is that we can phrase Σ_1 questions as queries to K.

Theorem 3.5 $A \in \Sigma_2$ iff A is c.e.-in-K.

Proof:

1) $A \in \Sigma_2$ implies A is c.e.-in-K:

 If $A \in \Sigma_2$ then there exists a TM R that always converges such that

 $$A = \{ x \mid (\exists y)(\forall z)[R(x, y, z) = 1] \}.$$

 Let M^K be the TM that does the following:

 1. Input(x, y).
 2. Ask K $(\forall z)[R(x, y, z) = 1]$. (Can rephrase as $(\exists z)[R(x, y, z) = 0]$.)
 3. If YES answer YES, if NO then answer NO.

 $$A = \{ x \mid (\exists y)[M^K(x, y) = 1] \}.$$

 Hence A is c.e.-in-K.

2) A c.e.-in-K implies $A \in \Sigma_2$.

 A is c.e.-in-K. So

 $$A = W^K_e = \{ x \mid (\exists s)(\forall t)[t \geq s \implies x \in W^K_{e,t}] \}.$$

 So A is Σ_2.

\[\]
Theorem 3.6 There exists $COL : \binom{\mathbb{N}}{2} \rightarrow [2]$ such that there is NO infinite Σ_2 homog set.

Proof: Combine Theorems 2.2 and 3.5. Note that we only need one part of the implication in Theorem 3.5.

4 Every Computable Coloring has an Infinite Π_2 Homog set

We obtain this with a modification of the usual proof of Ramsey’s theorem. the key is that we don’t really toss things out- we guess on what the colors are and change our mind.

Theorem 4.1 For every computable coloring $COL : \binom{\mathbb{N}}{2} \rightarrow [2]$ there is an infinite Π_2 homog set.

Proof:
We are given computable $COL : \binom{\mathbb{N}}{2} \rightarrow [2]$.
CONSTRUCTION of x_1, x_2, \ldots and c_1, c_2, \ldots

NOTE: at the end of stage s we might have x_1, \ldots, x_i defined where $i < s$. We will not try to keep track of how big i is. Also, we may have at stage (say) 1000 a sequence of length 50, and then at stage 1001 have a sequence of length only 25. The sequence will grow eventually but do so in fits and starts.

$x_1 = 1$

c_1 = \text{RED} \text{ We are guessing. We might change our mind later}$

Let $s \geq 2$, and assume that x_1, \ldots, x_{s-1} and c_1, \ldots, c_{s-1} are defined.

1. Ask K Does there exists $x \geq x_{s-1}$ such that, for all $1 \leq i \leq s-1$, $COL(x_i, x) = c_i$?

7
2. If YES then (using that \(\text{COL}\) is computable) find the least such \(x\).

\[x_i = x \]

\[c_i = \text{RED} \quad \text{We are guessing. We might change our mind later} \]

We have implicitly tossed out all of the numbers between \(x_{i-1}\) and \(x_i\).

3. If NO then we ask \(K\) how far back we can go. More rigorously we ask the following sequence of questions until we get a YES.

- \(\text{Does there exists } x \geq x_{s-1} \text{ such that, for all } 1 \leq i \leq s - 2, \text{COL}(x_i, x) = c_i?\)
- \(\text{Does there exists } x \geq x_{s-1} \text{ such that, for all } 1 \leq i \leq s - 3, \text{COL}(x_i, x) = c_i?\)
- \(\vdots\)
- \(\text{Does there exists } x \geq x_{s-1} \text{ such that, for all } 1 \leq i \leq 2, \text{COL}(x_i, x) = c_i?\)
- \(\text{Does there exists } x \geq x_{s-1} \text{ such that, for all } 1 \leq i \leq 1, \text{COL}(x_i, x) = c_i?\)

(One of these must be a YES since (1) if \(c_1 = \text{RED}\) and there are NO red edges coming out of \(x_1\) then there must be an infinite number of \(\text{BLUE}\) edges, and (2) if \(c_1=\text{BLUE}\) its because there are only a finite number of \(\text{RED}\) edges coming out of \(x_1\) so there are an infinite number of \(\text{BLUE}\) edges. Let \(i_0\) be such that \(\text{There exists } x \geq x_{s-1} \text{ such that, for all } 1 \leq i \leq i_0, \text{COL}(x_i, x) = c_i\)\) Do the following:

(a) Change the color of \(c_{i+1}\). (We will later see that this change must have been from \(\text{RED}\) to \(\text{BLUE}\).
(b) Wipe out \(x_{i+2}, \ldots, x_{s-1}\).
(c) Search for the \(x \geq x_{s-1}\) that the question asked says exist.
(d) \(x_{i+2}\) is now \(x\).
(e) c_{i+2} is now RED.

END OF CONSTRUCTION of $x_1, x_2 \ldots$ and c_1, c_2, \ldots.

We need to show that there is a Π_2 homog set.

Let X be the set of x_i that are put on the board and stay on the board.

Let R be the set of $x_i \in X$ whose final color is RED.

Claim 1: Once a number turns from RED to $BLUE$ it can't go back to RED again.

Proof:

If a number is turned $BLUE$ its because there are only a finite number of RED edges coming out of it. Hence there must be an infinite number of $BLUE$ edges coming out of it. Hence it will never change color (though it may be tossed out).

End of Proof

Claim 1: $X, R \in \Pi_2$.

Proof:

We show that $\overline{X} \in \Sigma_2$. In order to NOT be in X you must have, at some point in the construction, been tossed out.

$$\overline{X} = \{ x \mid (\exists x)[\text{at stage } s \text{ of the construction } x \text{ was tossed out}] \}.$$

Note that the condition is computable-in-K. Hence \overline{X} is c.e.-in-K. By Theorem 3.5 $\overline{X} \in \Sigma_2$.

We show that $\overline{R} \in \Sigma_2$. In order to NOT be in R you must have to either NOT be in X or have been turned blue. Note that once you turn at some point in the construction, been tossed out.

$$\overline{R} = \overline{X} \cup \{ x \mid (\exists x)[\text{at stage } s \text{ of the construction } x \text{ was turned BLUE}] \}.$$

Recall that Σ_2 is closed under complementation. So we only need to show that the other unio-nand is in Σ_2. Note that the condition is computable-in-K. Hence \overline{R} is c.e.-in-K. By Theorem 3.5
$\overline{R} \in \Sigma_2$.

End of Proof

There are two cases:

1. If R is infinite then R is an infinite homog set that is Π_2.

2. If R is finite then B is X minus a finite number of elements. Since X is Π_2, B is Π_2.

References