Stream ciphers
Stream Ciphers are Pseudorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.
Stream Ciphers are Pseudorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results from using it as the pseudo-one-time-pad.
Stream Ciphers are Pseudorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results from using it as the pseudo-one-time-pad.

We will not do that.
Stream Ciphers are Pseudo-random Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results from using it as the pseudo-one-time-pad.

We will not do that.

However,
Stream Ciphers are Pseudorandom Generators made practical!

They are better than PRG’s!

Are Stream Ciphers ciphers? Depends on who you ask.

Some people identify the stream cipher with the cipher that results from using it as the pseudo-one-time-pad.

We will not do that.

However,

we are right, and they are wrong.
Stream ciphers

- As we defined them, PRGs are limited
 - They have fixed-length output
 - They produce output in “one shot”

- In practice, PRGs are based on *stream ciphers*
 - Can be viewed as producing an “infinite” stream of pseudorandom bits, on demand
 - More flexible, more efficient
A **Stream Cipher** is a pair of efficient, deterministic algorithms (Init, GetBits) such that:

1. **Init** does the following:
 1.1 Input: *private* seed s, opt *public* Init Vector (IV) V
 1.2 Output: initial state st_0

2. **GetBits** does the following:
 2.1 Input: current state st
 2.2 Output: a bit y along with updated state st'

Note In practice, y is a block rather than a bit.
Stream ciphers

- Can use (Init, GetBits) to generate any desired number of output bits from an initial seed
Stream ciphers

- A stream cipher is *secure* (informally) if the output stream generated from a uniform seed is pseudorandom
 - i.e. regardless of how long the output stream is (so long as it is polynomial)
 - See book for formal definition
Do Stream Ciphers exist? Theoretical

A one-way function (perm) is easy to compute, hard to invert.
A one-way function (perm) with a hard core predicate is a function that is easy to compute but hard to invert, and (say) the middle bit of $f^{-1}(x)$ is hard to compute.

Chapter 7 shows:
\[\exists \text{ One way Perm } \implies \exists \text{ one way perm with a hcp.} \]
\[\exists \text{ one way perm with hcp } \implies \exists \text{ PRG with expansion 1} \]
\[\exists \text{ PRG with expa-1 } \implies \exists \text{ Stream Ciphers} \]

Note: (1-way func \(\implies \exists \text{ SC’s} \)) known but much harder.
Note: The Stream Cipher obtained this way is too slow to use :-(
Note: Proof of concept valuable :-)}
Do Stream Ciphers exist? Practical

We will show several practical attempts at Stream Ciphers:

1. Linear Feedback Shift Registers. Fast! Used! Not Secure!
2. Trivium. Fast! Used! Empirically Secure?

Note Seems impossible to get Stream Ciphers that are provably (even using Hardness Assumptions) psuedorandom and practical.

Note But having the rigor gives the practitioners (1) a target to shoot for, and (2) pitfalls to watch out for.
Example: Picture

Assume initial content of registers is 0100

First 4 state transition: 0100 → 1010 → 0101 → 0010 → ...

First 3 output bits: 001...
Linear Feedback Shift Registers (LFSR): Example

Degree 3 LFSR, 3 constants: \(c_2, c_1, c_0 \in \{0, 1\} \). + is mod 2.

Key is \(st_0 \) is 3 bits: \((s_2^0, s_1^0, s_0^0)\). NO IV (for now).

\[
st_1 = (s_2^1, s_1^1, s_0^1) = (c_2 s_2^0 + c_1 s_1^0 + c_0 s_0^0, s_2^0, s_1^0).
\]

\[
st_{t+1} = (s_2^t, s_1^t, s_0^t) = (c_2 s_2^t + c_1 s_1^t + c_0 s_0^t, s_2^t, s_1^t).
\]

In English: Bits shift right, left most bit is \(c \)-combo of prior bits.

\[
y_1 = s_0^0 \\
y_2 = s_1^0 \\
y_3 = s_2^0
\]

\[
y_4 = s_2^1 = c_2 y_3 + c_1 y_2 + c_0 y_1
\]

\[
y_t = s_2^{t-3} = c_2 y_{t-3} + c_1 y_{t-2} + c_0 y_{t-1}
\]

In English: \(y_t \) is (1) left most bit of \(st_{t-3} \) & (2) \(c \)-combo of prior \(y \).
Note the Two Definitions of y_t

$$y_t = s_{3}^{t-3} = c_2 y_{t-3} + c_1 y_{t-2} + c_0 y_{t-1}$$
Note the Two Definitions of y_t

$$y_t = s_3^{t-3} = c_2 y_{t-3} + c_1 y_{t-2} + c_0 y_{t-1}$$

1. $y_t = s_3^{t-3}$ is why LFSRs are so fast to compute. Note that all of the operations we do, shift and $+$ mod 2 (also called \oplus) are very quick. YEAH!
Note the Two Definitions of y_t

$y_t = s_{3}^{t-3} = c_2 y_{t-3} + c_1 y_{t-2} + c_0 y_{t-1}$

1. $y_t = s_{3}^{t-3}$ is why LFSRs are so fast to compute. Note that all of the operations we do, shift and $+$ mod 2 (also called \oplus) are very quick. YEAH!

2. $y_t = c_2 y_{t-3} + c_1 y_{t-2} + c_0 y_{t-1}$ is why (later) LFSRs are crackable. BOO!
Linear Feedback Shift Registers (LFSR)

Degree n LFSR, n constants: $c_{n-1}, \ldots, c_0 \in \{0, 1\}$. $+$ is mod 2. Key is st_0 is n bits: $(s_{n-1}^0, \ldots, s_0^0)$. NO IV (for now).

$st_1 = (s_{n-1}^1, \ldots, s_0^1) = (c_{n-1}s_{n-1}^0 + \cdots + c_0s_0^0, s_{n-1}^0, s_{n-3}^0, \ldots, s_1^0)$.

$st_{t+1} = (s_{n-1}^t, \ldots, s_0^t) = (c_{n-1}s_{n-1}^t + \cdots + c_0s_0^t, s_{n-1}^t, s_{n-2}^t, \ldots, s_1^t)$.

In English: Bits shift right, left most bit is c-combo of prior bits.

$y_1 = s_0^0 \quad \cdots \quad y_n = s_{n-1}^0$

$y_n = s_n^1 = c_{n-1}y_n + \cdots + c_0y_1$

$y_t = s_n^{t-n} = c_{n-1}y_{t-n} + \cdots + c_0y_{t-n}$.

In English: y_t is (1) left most bit of st_{t-n} & (2) c-combo of prior y.
Note the Two Definitions of y_t

$$y_t = s_{t-n} = \sum_{i=0}^{n-1} c_i y_{t-i}$$

is why LFSR’s are so fast to compute. YEAH!

is why (later) LFSR’s are crackable. BOO!
Note the Two Definitions of y_t

$$y_t = s_{n}^{t-n} = c_{n-1}y_{t-n} + \cdots + c_{0}y_{t-n}$$

1. $y_t = s_{n}^{t-3}$ is why LFSR are so fast to compute y_t. Note that all of the operations we do, shift and $+$ mod 2 (also called \oplus) are very quick. YEAH!
Note the Two Definitions of y_t

$$y_t = s_{n}^{t-n} = c_{n-1}y_{t-n} + \cdots + c_0y_{t-n}$$

1. $y_t = s_{n}^{t-3}$ is why LFSR’s are so fast to compute y_t. Note that all of the operations we do, shift and $+$ mod 2 (also called \oplus) are very quick. YEAH!

2. $y_t = c_{n-1}y_{t-n} + \cdots + c_0y_{t-1}$ is why (later) LFSR’s are crackable. BOO!.
LFSR with IV

LFSR of degree n is defined by c_{n-1}, \ldots, c_0 all in $\{0, 1\}$

Key is st'_0 is n bits. IV is n bits IV. $st_0 = st'_0 \oplus IV$.
All the rest is the same.
In English: XOR the private key with the public IV.
Why do this? Next Slide.
Two Ways to Use Stream Ciphers

Two Ways to Use Stream Ciphers. We illustrate with LFSR.

1. **Syn Mode** Alice gen and send private key. Bob sends message of length L, using $y_1 \cdots y_L$. Bob uses key to get $y_1 \cdots y_L$ and decode. Bob responds with message of length M using $y_{L+1} \cdots y_{L+M}$. They both keep in sync.

2. **Unsyn Mode** Alice gen and send private key. Alice sends public IV. Bob sends message of length L AND IV. Alice uses key and IV to get $y_1 \cdots y_L$ and can decode. Alice sends message of length M AND IV. Bob uses Key and IV to get $y_1 \cdots y_M$ and can decode. They do not have to be in sync.

When to use which? **Discuss**
Two Ways to Use Stream Ciphers

Two Ways to Use Stream Ciphers. We illustrate with LFSR.

1. **Syn Mode** Alice gen and send private key. Bob sends message of length L, using $y_1 \cdots y_L$. Bob uses key to get $y_1 \cdots y_L$ and decode. Bob responds with message of length M using $y_{L+1} \cdots y_{L+M}$. They both keep in sync.

2. **Unsyn Mode** Alice gen and send private key. Alice sends public IV. Bob sends message of length L AND IV. Alice uses key and IV to get $y_1 \cdots y_L$ and can decode. Alice sends message of length M AND IV. Bob uses Key and IV to get $y_1 \cdots y_M$ and can decode. They do not have to be in sync.

When to use which? **Discuss**

1. Use **Sync** if all communication will be in one session and communication is clear.

2. Use **Unsync** if Alice talks Monday, Bob replies Tuesday perhaps on a diff device or if Comm is noisy.
LFSRs as stream ciphers

- Key + IV used to initialize the state of the LFSR

- Every clock tick:
 1. State Updated
 2. Bit output
LFSRs

1. State (and output) “cycles” if state ever repeated

2. *Maximal-length LFSR* cycles through all $2^n - 1$ nonzero states

3. Known how to set feedback coefficients so as to achieve maximal length

4. Maximal-length LFSRs have good statistical properties . . .

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO SCIENCE.
LFSRs

1. State (and output) “cycles” if state ever repeated

2. *Maximal-length LFSR* cycles through all $2^n - 1$ nonzero states

3. Known how to set feedback coefficients so as to achieve maximal length

4. Maximal-length LFSRs have good statistical properties . . .

5. Are LFSRs secure? Vote YES, NO, UNKNOWN TO SCIENCE. NO.
Example of Bad Security

Degree 3. c_0, c_1, c_2 unknown. s_0^0, s_1^0, s_2^0 unknown.

$y_1 = s_0^0$
$y_2 = s_1^0$
$y_3 = s_2^0$

3 linear equations in 3 variables. Can find c_0, c_1, c_2. Cracked!

For n-degree LFSR can crack after 2^n iterations.

Moral: Linearity is bad cryptography.
Example of Bad Security

Degree 3. \(c_0, c_1, c_2 \) unknown. \(s_0^0, s_1^0, s_2^0 \) unknown.

\[
\begin{align*}
y_1 &= s_0^0 \\
y_2 &= s_1^0 \\
y_3 &= s_2^0 \\
y_4 &= c_2 y_3 + c_1 y_2 + c_0 y_1 \\
y_5 &= c_2 y_5 + c_1 y_4 + c_0 y_3 \\
y_6 &= c_2 y_5 + c_1 y_4 + c_0 y_3
\end{align*}
\]
Example of Bad Security

Degree 3. c_0, c_1, c_2 unknown. s_0^0, s_1^0, s_2^0 unknown.

\begin{align*}
y_1 &= s_0^0 \\ y_2 &= s_1^0 \\ y_3 &= s_2^0 \\
y_4 &= c_2 y_3 + c_1 y_2 + c_0 y_1 \\ y_5 &= c_2 y_5 + c_1 y_4 + c_0 y_3 \\ y_6 &= c_2 y_5 + c_1 y_4 + c_0 y_3
\end{align*}

3 linear equations in 3 variables. Can find c_0, c_1, c_2. **Cracked!**

For n-degree LFSR can crack after $2n$ iterations.

Moral: Linearity is *bad* cryptography.
LFSR and Linearity

Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable
Linearity makes LFSR’s fast

Linearity makes LFSR’s crackable

It’s that old saying:

He who lives by linearity, dies by linearity.
The Essence of Crypto

Recall: The Essence of Crypto is to make computation

1. Easy for Alice and Bob.
2. Hard for Eve.

LFSR makes computation easy for all three!
Nonlinear FRSSs

- Add nonlinearity to prevent attacks
 - Nonlinear feedback
 - Output is a nonlinear function of the state
 - Multiple (coupled) LFSRs
 - ... or any combination of the above

- Still want to preserve statistical properties of the output, and long cycle length
Nonlinear Feedback Shift Registers

Assume \(n \) even. + is mod 2.
Let \(f(x_1, \ldots, x_n) = x_1x_2 + x_3x_4 + \cdots x_{n-1}x_n. \)
\(st_0 \) is \(n \) bits: \((s_{n-1}^0, \ldots, s_0^0) \).

For \(i = 1 \) to \(\infty \)

\[
st_i = (s_{n-1}^i, \ldots, s_0^i) = (f(s_{n-1}^{i-1}, \ldots, s_0^{i-1}), s_{n-1}^{i-1}, s_{n-2}^{i-1}, \ldots, s_1^{i-1})
\]

\[
y_i = s_0^i
\]

In English: Bits shift right, left bit is \(f \) of bits at last stage.
Is this a good stream cipher? Discuss.
Nonlinear Feedback Shift Registers

Assume \(n \) even. + is mod 2.
Let \(f(x_1, \ldots, x_n) = x_1x_2 + x_3x_4 + \cdots x_{n-1}x_n \).
\(st_0 \) is \(n \) bits: \((s_{n-1}^0, \ldots, s_0^0)\).

For \(i = 1 \) to \(\infty \)

\[
st_i = (s_{n-1}^i, \ldots, s_0^i) = (f(s_{n-1}^{i-1}, \ldots, s_0^{i-1}), s_{n-1}^{i-1}, s_{n-2}^{i-1}, \ldots, s_1^{i-1})
\]

\[
y_i = s_0^i
\]

In English: Bits shift right, left bit is \(f \) of bits at last stage.
Is this a good stream cipher? Discuss
I do not know.
Nonlinear Feedback Shift Registers

Assume n even. $+$ is mod 2.
Let $f(x_1, \ldots, x_n) = x_1x_2 + x_3x_4 + \cdots x_{n-1}x_n$.

s_{i0} is n bits: $(s_{n-1}^0, \ldots, s_0^0)$.

For $i = 1$ to ∞

$$s_{ti} = (s_{n-1}^i, \ldots, s_0^i) = (f(s_{n-1}^{i-1}, \ldots, s_0^{i-1}), s_{n-1}^{i-1}, s_{n-2}^{i-1}, \ldots, s_1^{i-1})$$

$$y_i = s_0^i$$

In English: Bits shift right, left bit is f of bits at last stage.
Is this a good stream cipher? Discuss
I do not know. I just made it up for this slide.
Trivium

- Designed by De Cannière and Preneel in 2006 as part of eSTREAM competition
- Intended to be simple and efficient (especially in hardware)
- Essentially no attacks better than brute-force search are known
Trivium Hardware Abstractly
Trivium

- Three coupled FSRs of degree 93, 84, and 11

- Initialization:
 - 80-bit key in left-most registers of first FSR
 - 80-bit IV in left-most registers of second FSR
 - Remaining registers set to 0, except for three right-most registers of third FSR
 - run for 4×288 clock ticks to finish init.
Trivium-Initialization

\[K_1, \ldots, K_{80} \text{ Random} \]
\[IV_1, \ldots, IV_{80} \text{ Random} \]
\[(s_1, \ldots, s_{93}) \leftarrow (K_1, \ldots, K_{80}, 0, \ldots, 0) \]
\[(s_{94}, \ldots, s_{177}) \leftarrow (IV_1, \ldots, IV_{80}, 0, \ldots, 0) \]
\[(s_{178}, \ldots, s_{288}) \leftarrow (0, \ldots, 0, 1, 1, 1) \]

For \(i = 1 \) to \(4 \times 288 \) do

1. \(t_1 \leftarrow s_{86} + s_{91}s_{92} + s_{171} \)
2. \(t_2 \leftarrow s_{162} + s_{175}s_{176} + s_{177} + s_{264} \)
3. \(t_3 \leftarrow s_{243} + s_{286}s_{287} + s_{288} + s_{69} \)
4. \((s_1, \ldots, s_{93}) \leftarrow (t_3, s_1, \ldots, s_{92}) \)
5. \((s_{94}, \ldots, s_{177}) \leftarrow (t_1, s_{94}, \ldots, s_{176}) \)
6. \((s_{178}, \ldots, s_{288}) \leftarrow (t_2, s_{178}, \ldots, s_{287}) \)

Note no random bits output. This is just initialization.
Trivium-Iteration

We omit superscripts for readability.
For $i = 1$ to N do

1. $y_i = s_{66} + s_{93} + s_{162} + s_{177} + s_{243} + s_{288}$ (ith random bit).
2. $t_1 \leftarrow s_{86} + s_{91}s_{92} + s_{171}$
3. $t_2 \leftarrow s_{162} + s_{175}s_{176} + s_{177} + s_{264}$
4. $t_3 \leftarrow s_{243} + s_{286}s_{287} + s_{288} + s_{69}$
5. $(s_1, \ldots, s_{93}) \leftarrow (t_3, s_1, \ldots, s_{92})$
6. $(s_{94}, \ldots, s_{177}) \leftarrow (t_1, s_{94}, \ldots, s_{176})$
7. $(s_{178}, \ldots, s_{288}) \leftarrow (t_2, s_{178}, \ldots, s_{287})$

Note the three diff parts of s are three coupled nonlinear FSR.
Trivium based on LFSR though not LFSR

Note:

1. \(t_1, t_2, t_3 \) are nonlinear combos of prior bits.
2. \((s_1, \ldots, s_{93}) \leftarrow (t_3, s_1, \ldots, s_{92})\)
3. \((s_{94}, \ldots, s_{177}) \leftarrow (t_1, s_{94}, \ldots, s_{176})\)
4. \((s_{178}, \ldots, s_{288}) \leftarrow (t_2, s_{178}, \ldots, s_{287})\)

Since \(t_1, t_2, t_3 \) nonlinear, Trivium is NOT LFSR

But

Shift to the right and left most bit is BLAH

is very much like LFSR.

Benefit: Shifting is Fast!
Facts About Trivium

1) Has been build in hardware with 3488 logic gates. Small! Fast!
2) So far has not been broken. That we know of!
3) Naive method is 2^{80} steps. Guess all keys.
4) If only do ~ 700 init steps then Cube Attack is 2^{68} steps.
5) Seems to have long period but hard to know:
 1. Nonlin makes it hard to predict. Good for practical A and B.
 2. Nonlin makes it hard to analyze. Bad for theorists A and B.
6) Trivium is also the name of a rock band!
7) Two Papers on Trivium on course website
Why the name Trivium?

We quote the paper

The word trivium is Latin for “the three-fold way”, and refers to the three-fold symmetry of TRIVIUM. The adjective trivial which was derived from it, has a connotation of simplicity, which is also one of the characteristics of TRIVIUM.

(Quote continued on next slide)
Why the name Trivium?

Moreover, with some imagination, one might recognize the shape of a Trivial Pursuit board in Fig. 1

(Quote continued on next slide)
Why the name Trivium?

While we admit this respect “Mercedes” would have been a more appropriate name.
Why the name Trivium?

Finally, the name provides a nice title for a subsequent cryptanalysis paper: “Three Trivial Attacks on Trivium”.