Threshold Secret Sharing: Information-Theoretic
Zelda has a secret \(s \in \{0, 1\}^n \).

Def: Let \(1 \leq t \leq m \). \((t, L)\)-secret sharing is a way for Zelda to give strings to \(A_1, \ldots, A_L \) such that:

1. If any \(t \) get together than they can learn the secret.
2. If any \(t - 1 \) get together they cannot learn the secret.

Cannot learn the secret will be info-theoretic. Even if \(t - 1 \) people have big fancy supercomputers they cannot learn \(s \). We will later look at comp-security.
Applications

Rumor: Secret Sharing is used for the Russian Nuclear Codes. There are three people (one is Putin) and if two of them agree to launch, they can launch.

For people signing a contract long distance secret sharing is used as a building block in the protocol.
(4, 4)-secret sharing

\(A_1, A_2, A_3, A_4\) such that

1. If all four of \(A_1, A_2, A_3, A_4\) get together they can find \(s\).
2. If any three of them get together then learn \textbf{NOTHING}.
An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i.

Does this work?
An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

\[|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4} \]

2. Zelda gives A_i the string s_i.

Does this work?

1. If A_1, A_2, A_3, A_4 get together they can find s.

2.1 A_1 learns s_1 which is $1/4$ of the secret!

2.2 A_1, A_2 learn $s_1 s_2$ which is $1/2$ of the secret!

2.3 A_1, A_2, A_3 learn $s_1 s_2 s_3$ which is $3/4$ of the secret!
1. Zelda breaks \(s \) up into \(s = s_1s_1s_3s_4 \) where
\[
|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}
\]

2. Zelda gives \(A_i \) the string \(s_i \).

Does this work?

1. If \(A_1, A_2, A_3, A_4 \) get together they can find \(s \). \textbf{YES!!}
An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s = s_1 s_1 s_3 s_4$ where

$$|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}$$

2. Zelda gives A_i the string s_i.

Does this work?

1. If A_1, A_2, A_3, A_4 get together they can find s. **YES!!**
2. If any three of them get together they learn **NOTHING**.
An Attempt at \((4, 4)\)-Secret Sharing

1. Zelda breaks \(s\) up into \(s = s_1 s_1 s_3 s_4\) where

\[
|s_1| = |s_2| = |s_3| = |s_4| = \frac{n}{4}
\]

2. Zelda gives \(A_i\) the string \(s_i\).

Does this work?

1. If \(A_1, A_2, A_3, A_4\) get together they can find \(s\). YES!!
2. If any three of them get together they learn NOTHING. NO.
 2.1 \(A_1\) learns \(s_1\) which is \(\frac{1}{4}\) of the secret!
 2.2 \(A_1, A_2\) learn \(s_1 s_2\) which is \(\frac{1}{2}\) of the secret!
 2.3 \(A_1, A_2, A_3\) learn \(s_1 s_2 s_3\) which is \(\frac{3}{4}\) of the secret!
What do we mean by **NOTHING**?

*If any three of them get together they learn **NOTHING***

Informally:

1. Before Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $\text{BLAH}_{i,j,k}$.
2. After Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $\text{BLAH}_{i,j,k}$.
3. Giving out the shares tells each triple **NOTHING** they did not already know.

If A_i, A_j, A_k have **unlimited computing power**
What do we mean by **NOTHING**?

*If any three of them get together they learn** NOTHING*

Informally:

1. Before Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $BLAH_{i,j,k}$.
2. After Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $BLAH_{i,j,k}$.
3. Giving out the shares tells each triple **NOTHING** they did not already know.

If A_i, A_j, A_k have **unlimited computing power** they still learn **NOTHING**.
What do we mean by NOTHING?

If any three of them get together they learn NOTHING

Informally:

1. Before Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $BLAH_{i,j,k}$.
2. After Zelda gives out shares, if any three A_i, A_j, A_k get together, they know $BLAH_{i,j,k}$.
3. Giving out the shares tells each triple NOTHING they did not already know.

If A_i, A_j, A_k have unlimited computing power they still learn NOTHING.

Information-Theoretic Security
Is (4, 4)-Secret Sharing Possible?

VOTE: Is (4, 4)-Secret sharing possible?

1. YES
2. NO
3. YES given some hardness assumption
4. UNKNOWN TO SCIENCE
Is (4, 4)-Secret Sharing Possible?

VOTE: Is (4, 4)-Secret sharing possible?
1. YES
2. NO
3. YES given some hardness assumption
4. UNKNOWN TO SCIENCE

YES
Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in \{0,1\}^n$. Zelda gen random $r_1, r_2, r_3 \in \{0,1\}^n$.

2. Zelda gives $A_1 s_1 = r_1$.
 Zelda gives $A_2 s_2 = r_2$.
 Zelda gives $A_3 s_3 = r_3$.
 Zelda gives $A_4 s_4 = s \oplus r_1 \oplus r_2 \oplus r_3$

A_1, A_2, A_3, A_4 Can Recover the Secret

$$s_1 \oplus s_2 \oplus s_3 \oplus s_4 = r_1 \oplus r_2 \oplus r_3 \oplus r_1 \oplus r_2 \oplus r_3 \oplus s = s$$

Easy to see that if a triple get together they learn NOTHING
(2, 4)-Secret Sharing using Random Strings

For each $1 \leq i < j \leq 4$

1. Zelda generates random $r \in \{0, 1\}^n$.
2. Zelda gives A_i the strings $s_{i, (i, j)} = ((i, j), r)$.
3. Zelda gives A_j the strings $s_{j, (i, j)} = ((i, j), r \oplus s)$.

A_i, A_j Can Recover the Secret

A_i takes $((i, j), r)$ and just uses the r.

A_j takes $((i, j), r \oplus s)$ and just uses the $r \oplus s$.

They both compute $r \oplus r \oplus s = s$.

Easy to see that one person learns NOTHING.
(L, L)-Random String Method

People: \(A_1, \ldots, A_L \). Secret \(s \).

1. Zelda gen rand \(r_1, \ldots, r_{L-1} \).

2. \(A_1 \) get \(r_1 \)
 \(A_2 \) get \(r_2 \)
 \[
 \vdots
 \]
 \(A_{L-1} \) gets \(r_{L-1} \)
 \(A_L \) gets \(s \oplus r_1 \oplus \cdots \oplus r_{L-1} \)

3. If they all get together they will XOR all their strings to get \(s \)

We use this as building block for gen case.
(t, L) Secret Sharing

People: A₁, . . . , A₇. S₁, . . . , Sₘ ⊆ {A₁, . . . , A₇} are all the sets of size t. (m = \binom{7}{t}).

1. For every 1 ≤ j ≤ m Zelda does (t, t) secret sharing with the elements of Sⱼ but also prepends every string with j.

2. If the people in Sⱼ get together they XOR together strings prepended with j (do not use the j).

3. No subset can get the secret.

PRO: Can always do Threshold Secret Sharing.

CON: You are giving people A LOT of strings!
How Many Strings Does A_i Get in $(5, 10)$-Secret Sharing?

If do $(5, 10)$ secret sharing then how many strings does A_1 get?

A_1 gets a string for every $J \subseteq \{1, \ldots, 10\}$, $|J| = 5$, $1 \in J$.

Equivalent to:

A_1 gets a string for every $J \subseteq \{2, \ldots, 10\}$, $|J| = 4$.

How many sets? **Discuss**
How Many Strings Does A_i Get in $(5, 10)$-Secret Sharing?

If do $(5, 10)$ secret sharing then how many strings does A_1 get? A_1 gets a string for every $J \subseteq \{1, \ldots, 10\}$, $|J| = 5$, $1 \in J$.

Equivalent to:

A_1 gets a string for every $J \subseteq \{2, \ldots, 10\}$, $|J| = 4$.

How many sets? **Discuss**

$$\binom{9}{4} = 126 \text{ strings}$$
How Many Strings Does A_i Get in $(L/2, L)$-Secret Sharing?

If do $(L/2, L)$ secret sharing then how many strings does A_1 get?

A_1 gets a string for every $J \subseteq \{1, \ldots, L\}$, $|J| = \frac{L}{2}$, $1 \in J$.

Equivalent to:

A_1 gets a string for every $J \subseteq \{2, \ldots, L\}$, $|J| = \frac{L}{2} - 1$.

How many sets? Discuss
How Many Strings Does A_1 Get in $(L/2, L)$-Secret Sharing?

If do $(L/2, L)$ secret sharing then how many strings does A_1 get?

A_1 gets a string for every $J \subseteq \{1, \ldots, L\}$, $|J| = \frac{L}{2}$, $1 \in J$.

Equivalent to:

A_1 gets a string for every $J \subseteq \{2, \ldots, L\}$, $|J| = \frac{L}{2} - 1$.

How many sets? Discuss

$$\binom{L - 1}{\frac{L}{2} - 1} \sim \frac{2^L}{\sqrt{L}}$$ strings

That's A LOT of Strings!
Can We Reduce The Number of Strings for \((L/2, L)\)?

That's a lot of strings!
Can We Reduce The Number of Strings for \((L/2, L)\)?

In our \((L/2, L)\)-scheme each \(A_i\) gets \(\sim \frac{2L}{\sqrt{L}}\) strings.

VOTE

1. Requires roughly \(2^L\) strings.
2. \(O(\beta^L)\) strings for some \(1 < \beta < 2\) but not poly.
3. \(O(L^a)\) strings for some \(a > 1\) but not linear.
4. \(O(L)\) strings but not sublinear.
5. \(O(\log L)\) strings but not constant.
6. \(O(1)\) strings.
Can We Reduce The Number of Strings for \((L/2, L)\)?

In our \((L/2, L)\)-scheme each \(A_i\) gets \(\sim \frac{2L}{\sqrt{L}}\) strings.

VOTE

1. Requires roughly \(2^L\) strings.
2. \(O(\beta^L)\) strings for some \(1 < \beta < 2\) but not poly.
3. \(O(L^a)\) strings for some \(a > 1\) but not linear.
4. \(O(L)\) strings but not sublinear.
5. \(O(\log L)\) strings but not constant.
6. \(O(1)\) strings.

You can always do this problem with 1 string. Really!