Cryptography

Lecture 04
Perfect secrecy (formal)

- Encryption scheme \((\text{Gen, Enc, Dec})\) with message space \(\mathcal{M}\) and ciphertext space \(\mathcal{C}\) is perfectly secret if for every distribution over \(\mathcal{M}\), every \(m \in \mathcal{M}\), and every \(c \in \mathcal{C}\) with \(\Pr[C = c] > 0\), it holds that

\[
\Pr[M = m | C = c] = \Pr[M = m]
\]

- i.e. the distribution of \(M\) does not change conditioned on observing the ciphertext
Bayes’s theorem

- \(\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]} \)

Note: This is very useful in both this course and in life.
Example of Application of Bayes’s theorem

\[\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]} \]. There are two coins:

1) Coin F is fair: \(\Pr(H) = \Pr(T) = \frac{1}{2} \).
2) Coin B is biased: \(\Pr(H) = \frac{3}{4}, \Pr(T) = \frac{1}{4} \).

Alice picks coin at random, flips 10 times, gets all H. Is the coin definitely biased?
Example of Application of Bayes’s theorem

\[\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]} \]. There are two coins:

1) Coin F is fair: \(\Pr(H) = \Pr(T) = \frac{1}{2} \).
2) Coin B is biased: \(\Pr(H) = \frac{3}{4}, \Pr(T) = \frac{1}{4} \).

Alice picks coin at random, flips 10 times, gets all H. Is the coin definitely biased? No.
Example of Application of Bayes’s theorem

\[\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]} \]. There are two coins:

1) Coin F is fair: \(\Pr(H) = \Pr(T) = \frac{1}{2} \).
2) Coin B is biased: \(\Pr(H) = \frac{3}{4}, \Pr(T) = \frac{1}{4} \).

Alice picks coin at random, flips 10 times, gets all H. Is the coin definitely biased? No.

What is Prob that it is biased? VOTE:

1. Between 0.99 and 1.0
2. Between 0.98 and 0.99
3. Between 0.97 and 0.98
4. Less than 0.97
Example of Application of Bayes’s theorem

\[\Pr[A|B] = \Pr[B|A] \cdot \frac{\Pr[A]}{\Pr[B]} \]. There are two coins:

1) Coin F is fair: \(\Pr(H) = \Pr(T) = \frac{1}{2} \).
2) Coin B is biased: \(\Pr(H) = \frac{3}{4}, \Pr(T) = \frac{1}{4} \).

Alice picks coin at random, flips 10 times, gets all H.
Is the coin definitely biased? No.

What is Prob that it is biased? VOTE:

1. Between 0.99 and 1.0
2. Between 0.98 and 0.99
3. Between 0.97 and 0.98
4. Less than 0.97

We will see that it is 0.982954, so between 0.98 and 0.99.
Example of Application of Bayes’s theorem

\[
\Pr(B|H^{10}) = \frac{\Pr(B) \Pr(H^{10}|B)}{\Pr(H^{10})}
\]

\[
\Pr(B) = \frac{1}{2}
\]

\[
\Pr(H^{10}|B) = \left(\frac{3}{4}\right)^{10}
\]

\[
\Pr(H^{10}) = \Pr(H^{10} \cap F) + \Pr(H^{10} \cap B)
\]

\[
\Pr(H^{10} \cap F) = \Pr(H^{10}|F)\Pr(F) + \Pr(H^{10}|B)\Pr(B) = \frac{1}{2} \left(\left(\frac{1}{2}\right)^{10} + \left(\frac{3}{4}\right)^{10} \right)
\]

Put it together to get

\[
\Pr(B|H^{10}) = \frac{1}{1 + \left(\frac{2}{3}\right)^{10}} = 0.982954.
\]
Example of Application of Bayes’s theorem

\[\Pr(B \mid H^{10}) = \frac{\Pr(B) \Pr(H^{10} \mid B)}{\Pr(H^{10})} \]

\[
\begin{align*}
\Pr(B) &= \frac{1}{2} \\
\Pr(H^{10} \mid B) &= \left(\frac{3}{4}\right)^{10} \\
\Pr(H^{10}) &= \Pr(H^{10} \cap F) + \Pr(H^{10} \cap B) \\
\Pr(H^{10} \cap F) &= \Pr(H^{10} \mid F) \Pr(F) + \Pr(H^{10} \mid B) \Pr(B) = \\
&= \frac{1}{2} \left(\left(\frac{1}{2}\right)^{10} + \left(\frac{3}{4}\right)^{10} \right)
\end{align*}
\]

Put it together to get

\[\Pr(B \mid H^{10}) = \frac{1}{1 + (2/3)^{10}} = 0.982954. \]

\[\Pr(B \mid H^n) = \frac{1}{1 + (2/3)^n}. \]
One-time pad

- Let $m = \{0, 1\}^n$

- Gen: choose a uniform key $k \in \{0, 1\}^n$

- $Enc_k(m) = k \oplus m$

- $Dec_k(c) = k \oplus c$

- Correctness:

 $$Dec_k(Enc_k(m)) = k \oplus (k \oplus m)$$
 $$= (k \oplus k) \oplus m$$
 $$= m$$
One-time pad
Perfect secrecy of one-time pad

- Note that *any* observed ciphertext can correspond to *any* message (why?)
 - (This is necessary, but not sufficient, for perfect secrecy)

- So, having observed a ciphertext, the attacker cannot conclude for certain which message was sent
Perfect secrecy of one-time pad for \(n \)-bit messages

Fix arbitrary distribution over \(\mathcal{M} = \{0, 1\}^n \), and arbitrary \(m, c \in \{0, 1\}^n \)

Want: \(\Pr[M = m | C = c] = \Pr[M = m] \)

\[
\Pr[M = m | C = c] = \Pr[C = c | M = m] \cdot \frac{\Pr[M = m]}{\Pr[C = c]}
\]

So need

1. \(\Pr[C = c | M = m] = \Pr[K = m \oplus c] = 2^{-n} \)
2. \(\Pr[M = m] \). DO NOT KNOW. Arbitrary Distribution!
3. \(\Pr[C = c] = \Pr[c = K \oplus m] = \Pr[K = m \oplus c] = 2^{-n} \)

Hence: \(\Pr[M = m | C = c] = 2^{-n} \cdot \frac{\Pr[M = m]}{2^{-n}} = \Pr[M = m] \).
One-time pad

- The one-time pad achieves perfect secrecy!

- One-time pad has historically been used in the real world
 - E.g. “red phone” between DC and Moscow

- It is not widely used today.
 - Why isn’t the one-time pad used much?
Can’t Use the Same Key Twice

Say

\[c_1 = k \oplus m_1 \]
\[c_2 = k \oplus m_2 \]

Attacker can compute

\[c_1 \oplus c_2 = (k \oplus m_1) \oplus (k \oplus m_2) = m_1 \oplus m_2 \]

This leaks information about \(m_1, m_2 \)!
Can’t Use the Same Key Twice?

- \(m_1 \oplus m_2 \) is information about \(m_1, m_2 \)

- Is this significant?
 - No longer perfectly secret!
 - \(m_1 \oplus m_2 \) reveals where \(m_1, m_2 \) differ
 - Frequency analysis
 - Exploiting characteristics of ASCII...
One-time pad

- Drawbacks
 - Key as long as the message
 - Only secure if each key is used to encrypt once

Are there any other schemes that are perfectly secure?

Vote:

1. YES
2. NO
3. OTHER
One-time pad

- Drawbacks
 - Key as long as the message
 - Only secure if each key is used to encrypt *once*

Are there any other schemes that are perfectly secure!

Vote:

1. YES
2. NO
3. OTHER

NO.
The 1-letter shift cipher, *is* 1-time pad.
Alice wants to send 10-bit message to Bob. Use (Gen, Enc, Dec).
Assume number of keys $< 2^{10} = 1024$. Say 1023.
Will information be leaked? Discuss
Optimality of the one-time pad – Example

Alice wants to send 10-bit message to Bob. Use (Gen, Enc, Dec). Assume number of keys < $2^{10} = 1024$. Say 1023. Will information be leaked? Discuss YES
Alice wants to send 10-bit message to Bob. Use (Gen, Enc, Dec). Assume number of keys \(< 2^{10} = 1024\). Say 1023.

Will information be leaked? Discuss YES

Eve sees Alice send Bob \(c\). Eve knows \(\mathcal{K} = \{k_1, \ldots, k_{1023}\}\).

Eve computes \(\text{Dec}_{k_1}(c), \text{Dec}_{k_2}(c), \ldots, \text{Dec}_{k_{1023}}(c)\)

Let \(m'\) be the one message that Eve did NOT get.

Eve knows \(m \neq m'\). This is a leak!

Hence \(\mathcal{K}\) must be of size \(2^{10}\) to avoid having a leak!
Optimality of the one-time pad

- **Theorem:** If (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret, then $|\mathcal{K}| \geq |\mathcal{M}|$

- **Intuition:**
 - Given any ciphertext, try decrypting under every possible key in \mathcal{K}
 - This gives a list of up to $|\mathcal{K}|$ possible messages
 - If $|\mathcal{K}| < |\mathcal{M}|$, some message is not on the list
Theorem: If (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret, then $|\mathcal{K}| \geq |\mathcal{M}|$

Proof: Just like last slide!
1-Time Pad is the Gold Standard

The 1-time pad is hard to really do.

However, it gives us a target.

In future we will ask

Is this encryption system 1-time-pad-like?
Where do we stand?

- Defined perfect secrecy
- One-time pad achieves it!
- One-time pad is optimal!
- Are we done...?
Perfect secrecy

- Requires that *absolutely no information* about the plaintext is leaked, even to eavesdroppers *with unlimited computational power*
 - Has some inherent drawbacks
 - Seems unnecessarily strong

Two directions to go

1. Try to generate random bits so can use 1-time pad (do now).
2. Try to relax definition of Perfect Secrecy so that achievable and secure (do later).
A brief detour: randomness generation
Key generation

- When describing algorithms, we assume access to uniformly distributed bits/bytes
- Where do these actually come from?
- Random-number generation
Random-number generation

- Precise details depend on the system
 - Linux or unix: /dev/random or /dev/urandom
 - **Do not use rand() or java.util.Random**
 Not as random as the name would indicate!
 - Use crypto libraries instead
Random-number generation

- Two steps:
 1. Continually collect ‘unpredictable” data.
 2. Correct biases in it to make it more random. Called smoothing.

Unpredictable: Different models.

1. There is a $0 < p < 1$ such that each bit has
 \[\Pr(1) = p, \quad \Pr(0) = 1 - p. \]
 Note that bits are independent. p is not known. We will only deal with this.

2. Not independent but simple dependency. For example, if $b_i = 1$ then
 \[\Pr(b_{i+1} = 1) = p. \]

3. Complicated dependencies. Depends on last x bits.
Random-number generation

Request random bits

Processing/smoothing
Smoothing via Von Neumann Technique (VN)

- Need to eliminate both bias and dependencies

- VN technique for eliminating bias:
 - Collect two bits per output bit
 - 01 \mapsto 0
 - 10 \mapsto 1
 - 00, 11 \mapsto skip
 - Note that this assumes independence (as well as constant bias)
Assume that $\Pr(b = 0) = p$ and $\Pr(b = 1) = 1 - p$.

If flip 2 coins then

$$\Pr(01) + \Pr(10) = p(1 - p) + (1 - p)p = 2p(1 - p).$$

If flip $2n$ coins then expected number of random bits is $2np(1 - p)$.
How Good is VN Method?

If flip 14 coins ($n = 7$) then we get the following graph:

![Graph showing expected number of output bits versus probability](image)
Step 2: Smoothing via Elias. Prepossess

1. Of the $\binom{7}{3} = 35$ elts of $\{0, 1\}^7$ with 4 0’s and 3 1’s, toss 3 of them out. Let B be a bijection from what’s left to $\{0, 1\}^5$.

2. Of the $\binom{7}{3} = 35$ elts of $\{0, 1\}^7$ with 3 0’s and 4 1’s, toss 3 of them out. Let B be a bijection from what’s left to $\{0, 1\}^5$.

3. Of the $\binom{7}{2} = 21$ elts of $\{0, 1\}^7$ with 5 0’s and 2 1’s, toss 5 of them out. Let B be a bijection from what’s left to $\{0, 1\}^4$.

4. Of the $\binom{7}{2} = 21$ elts of $\{0, 1\}^7$ with 2 0’s and 5 1’s, toss 5 of them out. Let B be a bijection from what’s left to $\{0, 1\}^4$.

5. Of the $\binom{7}{1} = 7$ elts of $\{0, 1\}^7$ with 6 0’s and 1 1’s, toss 3 of them out. Let B be a bijection from what’s left to $\{0, 1\}^2$.

6. Of the $\binom{7}{1} = 7$ elts of $\{0, 1\}^7$ with 1 0’s and 6 1’s, toss 3 of them out. Let B be a bijection from what’s left to $\{0, 1\}^2$.

Sequences tossed out are called bad.
Step 2: Smoothing via Elias

Assume that \(\Pr(b = 0) = p \) and \(\Pr(b = 1) = 1 - p \).

1. Flip 7 coins. Let the sequence be \(s \).
2. If \(s \) is bad then goto step 1.
3. Output \(B(s) \). (could be 2, 4, or 5 bits).

Let \(X \) be the number of bits.
Expected Number of Random Bits

\[E(X) = 5\Pr(X = 5) + 4\Pr(X = 4) + 2\Pr(X = 2) \]

\[5\Pr(X = 5) = 5 \times (32p^4(1 - p)^3 + 32p^3(1 - p)^4) = 160p^3(1 - p)^3 \]

\[4\Pr(X = 4) = 4 \times (16p^5(1 - p)^2 + 16p^2(1 - p)^5) = 64p^2(1 - p)^2(p^3 + (1 - p)^3) \]

\[2\Pr(X = 2) = 2 \times (4p^6(1 - p) + 4p(1 - p)^6) = 8p(1 - p)(p^5 + (1 - p)^5) \]

\[E(X) = -8p^6 + 24p^5 - 40p^3 + 16p^3 + 8p \]
How good is Elias Method

If flip 14 bits:

Much better than VN. Can we do better? Discuss.
VN vs GMS

If we flip 14 bits:
No

Discuss why
Is Elias Actually Used?

No

Discuss why

1. Assumes independent bits with constant bias.
2. Need to wait for all 7 flips to get some bits.
3. If \(p = 0.3 \) then 14 flips yields only \(\sim 4 \) random bits.
Is Elias Actually Used?

No

Discuss why

1. Assumes independent bits with constant bias.
2. Need to wait for all 7 flips to get some bits.
3. If $p = 0.3$ then 14 flips yields only ~ 4 random bits. Can improve this (HW).
Is Elias Actually Used?

No

Discuss why

1. Assumes independent bits with constant bias.
2. Need to wait for all 7 flips to get some bits.
3. If $p = 0.3$ then 14 flips yields only ~ 4 random bits. Can improve this (HW).
4. Perfect randomness not really needed
Is Elias Actually Used?

No

Discuss why

1. Assumes independent bits with constant bias.
2. Need to wait for all 7 flips to get some bits.
3. If $p = 0.3$ then 14 flips yields only ~ 4 random bits. Can improve this (HW).
4. Perfect randomness not really needed
5. Pseudorandomness good enough. We will discuss later.