Chosen Plaintext Attacks (CPA)
CPA-Security

\[k \xrightarrow{\text{c}_1, \text{c}_2} k \]

\[c_1 \leftarrow \text{Enc}_k(m_1) \]
\[c_2 \leftarrow \text{Enc}_k(m_2) \]
New Attacks! Chosen Plaintext Attacks (henceforth CPA) is when Eve can choose to see some messages encoded. Formally she has Black Box for ENC_k.

We will:

1. Define CPA for perfect security.
2. Define CPA for computational security.
Perfect CPA-Security via a Game

\(\Pi = (\text{GEN}, \text{ENC}, \text{DEC}) \) be an enc sch, message space \(\mathcal{M} \).

Game: Alice and Eve are the players. Alice has full access to \(\Pi \). Eve has access to \(\text{ENC}_k \).

1. Alice \(k \leftarrow \mathcal{K} \). Eve does NOT know \(k \).
2. Eve picks \(m_0, m_1 \in \mathcal{M} \). Eve has black box for \(\text{ENC}_k \).
3. Alice picks \(m \in \{m_0, m_1\} \), \(c \leftarrow \text{ENC}_k(m) \)
4. Alice sends \(c \) to Eve.
5. Eve outputs \(m_0 \) or \(m_1 \), hoping that her output is \(\text{DEC}_k(c) \).
6. Eve **wins** if she is right.

Note: \(\text{ENC}_k \) is randomized, so Eve can’t just compute \(\text{ENC}_k(m_0) \) and \(\text{ENC}_k(m_1) \) and see which one is \(c \).

Does Eve has a strategy that wins over half the time?
Perfect CPA-Security

- Π is secure against chosen-plaintext attacks (CPA-secure) if for all Eve,

$$\Pr[\text{Eve Wins}] \leq \frac{1}{2}$$
Eve always wins if ENC_k is Deterministic

1. Eve picks m_0, m_1. Finds $c_0 = ENC_k(m_0), c_1 = ENC_k(m_1)$.
2. Alice sends Eve $c = ENC_k(m_b)$. Eve has to determine b.
3. If $c = c_0$ then Eve sets $b' = 0$, if $c = c_1$ then Eve sets $b' = 1$.

Upshot: ALL deterministic schemes are CPA-insecure.
Comp CPA-Security

Π = (GEN, ENC, DEC) be an enc sch, message space \mathcal{M}. n is parameter.

Game: Alice and Eve are the players. Alice has full access to Π. Eve has access to ENC_k.

1. Alice $k \leftarrow \mathcal{K} \cap \{0, 1\}^n$. Eve does NOT know k.
2. Eve picks $m_0, m_1 \in \mathcal{M}$, $|m_0| = |m_1|$
3. Alice picks $m \in \{m_0, m_1\}$, $c \leftarrow ENC_k(m)$
4. Alice sends c to Eve.
5. Eve outputs m_0 or m_1, hoping that her output is $DEC_k(c)$.
6. Eve **wins** if she is right.

Does Eve has a strategy that wins over half the time?
Comp. CPA-Security

- Π is **CPA Secure** if for all PPT Eves, there is a **neg function** $\epsilon(n)$ such that

\[
\Pr[\text{Eve Wins}] \leq \frac{1}{2} + \epsilon(n)
\]
Randomized Encryption

1. Any Deterministic Encryption will NOT be CCA-secure.
2. Hence we have to use Randomized Encryption.
3. The issue is *not* an artifact of our definition: Even being able to tell if two messages are the same is a leak.
Deterministic Encryption (for contrast)

n is a security parameter. A Deterministic Private-Key Encryption Scheme has message space \mathcal{M}, Key space $\mathcal{K} = \{0, 1\}^n$, and algorithms (GEN, ENC, DEC):

1. GEN generates keys $k \in \mathcal{K}$.
2. ENC_k encrypts messages, DEC_k decrypts messages.
3. $(\forall k \in \mathcal{K})(\forall m \in \mathcal{M}), \text{DEC}_k(\text{ENC}_k(m)) = m$
Keyed functions

1. Let $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be an efficient, deterministic algorithm.

2. Define $F_k(x) = F(k, x)$

3. The first input is called the key.

4. Choosing a uniform $k \in \{0, 1\}^n$ is equivalent to choosing the function $F_k : \{0, 1\}^n \rightarrow \{0, 1\}^n$

Note: In literature and the textbook Keyed functions k, x can be diff sizes, but we never do.
Keyed functions

1. Let $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be an efficient, deterministic algorithm

2. Define $F_k(x) = F(k, x)$

3. The first input is called the key

4. Choosing a uniform $k \in \{0, 1\}^n$ is equivalent to choosing the function $F_k : \{0, 1\}^n \rightarrow \{0, 1\}^n$

Note: In literature and the textbook Keyed functions k, x can be diff sizes, but we never do. They are wrong, we are right.
Randomized Encryption

A Randomized Private-Key Encryption Scheme has message space \mathcal{M}, Key space $\mathcal{K} = \{0, 1\}^n$, algorithms $(\text{GEN}, \text{ENC}, \text{DEC})$.

1. GEN generates keys $k \in \mathcal{K}$ (Think: picking an F_k rand.)
2. ENC_k: on input m it picks a rand $r \in \{0, 1\}^n$ and outputs $(r, m \oplus F_k(r))$.
3. $\text{DEC}_k(r, c) = c \oplus F_k(r)$.

Note:

1. $\text{ENC}_k(m)$ is not a function- it can return many different pairs.
2. Easy to see that Encrypt-Decrypt works.
3. Rand Shift is not an example, but is the same spirit.
4. General definition that encompass’s Rand Shift: Can replace \oplus with any invertible operation.
Pseudorandom functions
Informally, a pseudorandom function “looks like” a random (i.e. uniform) function

Can define formally via a Game. We won’t. Might be HW or Exam Question.
Theorem: If F_k is a PRF then the following encryption scheme is CPA-secure.

1. **GEN** generates keys $k \in \mathcal{K}$ (Think: picking an F_k rand.)
2. **ENC$_k$**: on input m it picks a rand $r \in \{0, 1\}^n$ and outputs $(r, m \oplus F_k(r))$.
3. **DEC$_k$$(r, c) = c \oplus F_k(r)$.

Proof Sketch: If not CPA-secure then F_k is not a PRF.
Substitution-Permutation Networks (SPNs)
Recall...

- Want keyed permutation

\[F : \{0, 1\}^n \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \]

\(n = \text{key length, } \ell = \text{block length} \)

- Want \(F_k \) (for uniform, unknown key \(k \)) to be indistinguishable from a uniform permutation over \(\{0, 1\}^\ell \)
SPN

PLAINTEXT

S_1 S_2 S_3 S_4

P

KEY

K_0

K_1

K_2

K_3

CIPHERTEXT
Key will be $k = k_1 \cdots k_{n/8}$ and k_i’s will be used along with public S-box to create perms.

- $f_{k_i}(x) = S_i(k_i \oplus x)$, where S_i is a public permutation
- S_i are called “S-boxes” (substitution boxes)
- XORing the key is called “key mixing”
- Note that this is still invertible (given the key)
Avalanche effect

- Design S-boxes and mixing permutation to ensure avalanche effect
 - Small differences should eventually propagate to entire output

- S-boxes: 1-bit input change $\implies \geq$ 2-bit output change

- Mixing permutation
 - Each bit output from a given S-box should feed into a *different* S-box in the next round
S-Boxes are HARD to Create

Building them is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes
S-Boxes are HARD to Create

Building them is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to you find?
S-Boxes are HARD to Create

Building them is a major challenge.

Titles of Papers that tried:

The Design of S-Boxes by Simulated Annealing

A New Chaotic Substitution Box Design for Block ciphers

Perfect Nonlinear S-Boxes

If you type in S-Boxes into Google Scholar how many papers to you find?

20,000. Given repeats and conference-Journal repeats, there are approx 10,000 papers on S-boxes.
1) There are attacks on 1-round and 2-round SPN’s
2) Can extend to r rounds but time complexity goes up.
3) These attacks are better than naive but still too slow.
4) SPN considered secure if r is large enough.
5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9 rounds (and other things) and is thought to be secure.
1) There are attacks on 1-round and 2-round SPN’s
2) Can extend to r rounds but time complexity goes up.
3) These attacks are better than naive but still too slow.
4) SPN considered secure if r is large enough.
5) AES, a widely used SPN, uses 8-bit S-boxes and at least 9 rounds (and other things) and is thought to be secure. For now.
Feistel networks
In SPN Network S-boxes Invertible
SPN: PROS and CONS

PRO: With enough rounds secure.

CON: Hard to come up with invertible S-boxes.

Feistel Networks will not need invertible components but will be secure.
Feistel networks

1) Message length is ℓ. Just like SPN.
2) Key $k = k_1 \cdots k_r$ of length n. r rounds. Just like SPN.
3) $|k_i| = n/r$. Need NOT be ℓ. Unlike SPN.
4) Use key k_i in ith round. Just like SPN.
5) Instead of S-boxes we have public functions \hat{f}_i. Need not be invertible! Unlike SPN. We derive $f_i(R) = \hat{f}_i(k_i, R)$ from them.

For 1-round:
Input: $L_0 R_0$, $|L_0| = |R_0| = \ell/2$.
Output: $L_1 R_1$ where $L_1 = R_0$, $R_1 = L_0 \oplus f_1(R_0)$
Invertible! The nature of $f_1(R)$ does not matter.
1) Input($L_1 R_1$)
2) $R_0 = L_1$.
3) Can compute $f_1(R_0)$ and hence $L_0 = R_1 \oplus f_1(R_0)$.
Feistel Network

Encryption

Plaintext

\[
\begin{array}{c|c}
L_0 & R_0 \\
\hline
\end{array}
\]

Decryption

Ciphertext

\[
\begin{array}{c|c}
R_{n+1} & L_{n+1} \\
\hline
\end{array}
\]

\[K_0 \uparrow \quad F \quad \downarrow K_0\]

\[K_1 \uparrow \quad F \quad \downarrow K_1\]

\[\vdots\]

\[K_n \uparrow \quad F \quad \downarrow K_n\]

\[R_{n+1} \quad L_{n+1}\]

\[L_0 \quad R_0\]

\[\text{Ciphertext} \quad \text{Plaintext}\]
1) Message length is ℓ. Just like SPN.
2) Key $k = k_1 \cdots k_r$ of length n. r rounds. Just like SPN.
3) $|k_i| = n/r$. Need NOT be ℓ. Unlike SPN.
4) Use key k_i in ith round. Just like SPN.
5) Public functions \hat{f}_i. Need not be invertible! Unlike SPN.

$f_i(R) = \hat{f}_i(k_i, R)$ from

Input: $L_0 R_0$, $|L_0| = |R_0| = \ell/2$.

Output or Round 1: $L_1 R_1$ where $L_1 = R_0$, $R_1 = L_0 \oplus f_1(R_0)$

Output or Round 2: $L_2 R_2$ where $L_2 = R_1$, $R_2 = L_1 \oplus f_2(R_1)$

:::

Output or Round r: $L_r R_r$ where $L_r = R_{r-1}$, $R_r = L_{r-1} \oplus f_r(R_{r-1})$
Data Encryption Standard (DES)

- Standardized in 1977
- 56-bit keys, 64-bit block length
- 16-round Feistel network
 - Same round function in all rounds (but different sub-keys)
 - Basically an SPN design! But easier to build.
DES mangler function is \hat{f}_i.

Diagram showing the process of transforming a 32-bit input into a 32-bit output through multiple stages of input, intermediate, and output processes.
Security of DES

PRO: DES is extremely well-designed
Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need **lots of** Plaintext.
Security of DES

PRO: DES is extremely well-designed

PRO: Known attacks brute force or need lots of Plaintext.

BIG CON: Parameters are too small! Brute-force search is feasible
56-bit key length

- A concern as soon as DES was released.
- Released in 1975, but that was then, this is now.

- Brute-force search over 2^{56} keys is possible
 - 1997: 1000s of computers, 96 days
 - 1998: distributed.net, 41 days
 - 1999: Deep Crack ($250,000), 56 hours
 - 2018: 48 FPGAs, 1 day
 - 2019: Will do as Classroom demo when teach this course in Fall of 2019.
Increasing key length?

- DES has a key that is too short
- How to fix?
 - Design new cipher. HARD!
 - Tweak DES so that it takes a larger key. HARD!
 - Build a new cipher using DES as a black box. EASY?
Double encryption

- Let $F : \{0, 1\}^n \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$
 - (i.e. $n=56$, $\ell=64$ for DES)
- Define $F^2 : \{0, 1\}^{2n} \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ as follows:
 $$F^2_{k_1,k_2}(x) = F_{k_1}(F_{k_2}(x))$$
 (still invertible)

- If best known attack on F takes time 2^n, is it reasonable to assume that the best known attack on F^2 takes time 2^{2n}?
 Vote! YES, NO, UNKNOWN TO SCIENCE
Double encryption

Let \(F : \{0, 1\}^n \times \{0, 1\}^\ell \to \{0, 1\}^\ell \)

(i.e. \(n=56, \ell=64 \) for DES)

Define \(F^2 : \{0, 1\}^{2n} \times \{0, 1\}^\ell \to \{0, 1\}^\ell \) as follows:

\[
F^2_{k_1,k_2}(x) = F_{k_1}(F_{k_2}(x))
\]

(still invertible)

If best known attack on \(F \) takes time \(2^n \), is it reasonable to assume that the best known attack on \(F^2 \) takes time \(2^{2n} \)?

Vote! YES, NO, UNKNOWN TO SCIENCE

NO
Triple encryption

- Define $F^3 : \{0, 1\}^{3n} \times \{0, 1\}^\ell \to \{0, 1\}^\ell$ as follows:

$$F^3_{k_1, k_2, k_3}(x) = F_{k_1}(F_{k_2}(F_{k_3}(x)))$$

- Can do meet-in-the-middle but would be 2^{2n}.
- No better attack known.
Define $F^3 : \{0, 1\}^{2n} \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ as follows:

$$F^3_{k_1, k_2}(x) = F_{k_1}(F_{k_2}(F_{k_1}(x)))$$

- Best attacks take time 2^{2n} — optimal given the key length!
- Sames on key length.
- Good for some backward-compatibiliy issues