Pseudorandom Functions and Permutations
Keyed functions

Let $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be an efficient, deterministic algorithm.

- Define $F_k(x) = F(k, x)$
- The first input is called the key

Choosing a uniform $k \in \{0, 1\}^n$ is equivalent to choosing the function $F_k : \{0, 1\}^n \rightarrow \{0, 1\}^n$

- i.e. for fixed key length n, the algorithm F defines a distribution over functions in Func_n!

Note: A Keyed Perm requires F_k a perm and F_k^{-1} easy to compute.
Pseudorandom Functions (PRFs)

We define Pseudorandom Function informally.

A Pseudorandom Function is a keyed function $F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ such that a PPT Eve cannot do well in the following game:

1. Alice picks $k \in \{0, 1\}^n$ and hence picks F_k
2. Bob picks a function f uniformly at random from func_n.
3. Eve gets a black box for one of $\{F_k, f\}$.
4. Eve needs to determine which one.
\(f \in \text{Func}_n \) chosen uniformly at random

World 0

\[
\begin{array}{c}
\text{f} \\
\text{f(x_1)} \\
\vdots \\
\text{x_t} \\
\text{f(x_t)}
\end{array}
\]

??

(poly-time)

World 1

\(k \in \{0,1\}^n \) chosen uniformly at random

\[
\begin{array}{c}
\text{F}_k \\
\text{F}_k(x_1) \\
\vdots \\
\text{x_t} \\
\text{F}_k(x_t)
\end{array}
\]
We define **Pseudorandom Permutation** informally.

A **Pseudorandom Permutation** is a keyed function $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ such that every F_k is a permutation and a PPT Eve cannot do well in the following game:

1. Alice picks $k \in \{0,1\}^n$ and hence picks F_k.
2. Bob picks a permutation f uniformly from $perm_n$.
3. Eve gets a black box for one of $\{F_k, f\}$.
4. Eve needs to determine which one.
Note:

- For large enough \(n \), a random permutation is indistinguishable from a random function.

- So in Pseudorandom Function game Bob could pick a random permutation.
PRF

Functions Yields PRGenerators

- PRF F immediately implies a PRG G:
 - Define $G(k) = F_k(0 \ldots 0) \mid F_k(0 \ldots 1) \mid \ldots F_k(1 \ldots 1)$

- PRF can be viewed as a PRG with random access to exponentially long output
 - The function F_k can be viewed as the $n2^n$-bit string $F_k(0 \ldots 0) \mid \ldots \mid F_k(1 \ldots 1)$
A one-way function (perm) is function (perm): easy to compute, hard to invert.

A one-way function (perm) with a hard core predicate is a function (perm) that is easy to compute but hard to invert, and (say) the middle bit of \(f^{-1}(x) \) is hard to compute.

Chapter 7 shows:
\[\exists \text{ One way Perm } \implies \exists \text{ one way perm with a hcp.} \]
\[\exists \text{ one way perm with hcp } \implies \exists \text{ PRG with expansion 1} \]
\[\exists \text{ PRG with expa-1 } \implies \exists \text{ PRG with expa-p(n) any poly p.} \]
\[\exists \text{ PRG with expa-2n } \implies \exists \text{ PRF.} \]

Note: One way func \(\implies \) PRF also known but much harder.
Comment on Theoretical Answer

Could start with a function that we thing is a One Way Perm. Can you think of one? Discuss
Comment on Theoretical Answer

Could start with a function that we think is a One Way Perm. Can you think of one? Discuss

If \(p \) is a prime and \(g \) is a generator than \(f(x) = g^x \pmod{p} \):

1. \(f \) is a perm.
2. If we think Discrete Log is hard then \(f \) is not invertible.
Comment on Theoretical Answer

Could start with a function that we think is a One Way Perm. Can you think of one? Discuss

If p is a prime and g is a generator than $f(x) = g^x \pmod{p}$:

1. f is a perm.
2. If we think Discrete Log is hard then f is not invertible.

DL hard $\implies f$ is one-way-perm $\implies \cdots \implies$ PRF.

Should we construct one this way? Discuss
Comment on Theoretical Answer

Could start with a function that we thing is a One Way Perm. Can you think of one? Discuss

If p is a prime and g is a generator than $f(x) = g^x \pmod{p}$:

1. f is a perm.
2. If we think Discrete Log is hard then f is not invertible.

DL hard $\implies f$ is one-way-perm $\implies \cdots \implies$ PRF.

Should we construct one this way? Discuss

No: Too slow. But good for proof of concept.
Do PRFs/PRPs exist? Practical

- Block ciphers are practical constructions of pseudorandom permutations

- No asymptotics: $F : \{0, 1\}^n \times \{0, 1\}^m \to \{0, 1\}^m$
 - $n =$ “key length”
 - $m =$ “block length”

- Hard to distinguish F_k from uniform $f \in Perm_m$ even for attackers running in time $\approx 2^n$
Advanced encryption standard (AES)

- Standardized by NIST in 2000 based on a public, worldwide competition lasting over 3 years
- Block length = 128 bits
- Key length = 128, 192, or 256 bits

Will discuss details later in the course

Currently no reason to use anything else
Recall Comp CPA-security via a Game.

Π is an encryption system. n is a security param.

1. $k \leftarrow \text{Gen}(1^n)$. Eve does NOT know k.
2. Eve picks $m_0, m_1 \in \mathcal{M} \ (|m_0| = |m_1|)$. Eve has BB for Enc_k.
3. $b \leftarrow \{0, 1\}, \ c \leftarrow \text{Enc}_k(m_b)$
4. Π sends c to Eve.
5. Eve outputs $b' \in \{0, 1\}$. Eve has BB for Enc_k.
6. If $b = b'$ then Eve Wins!

Π Comp CPA-secure if for all PPT Eve

$$\Pr[\text{Eve Wins}] \leq \frac{1}{2} + \varepsilon(n)$$
CPA-secure encryption

- Let F be a keyed function

- $Gen(1^n)$: choose a uniform key $k \in \{0, 1\}^n$

- $Enc_k(m)$
 - Choose uniform $r \in \{0, 1\}^n$ (IV, Public)
 - Output ciphertext $< r, F_k(r) \oplus m >$

- $Dec_k(c_1, c_2)$: output $c_2 \oplus F_k(c_1)$

- Correctness is immediate
Real-world security?

- What happens if an r is ever reused?
- What is the probability that the r used in some challenge ciphertext is also used for some other ciphertext?
- What happens to the bound if the r is chosen non-uniformly?
Real-world security?

- What happens if an r is ever reused?
- What is the probability that the r used in some challenge ciphertext is also used for some other ciphertext?
- What happens to the bound if the r is chosen non-uniformly?

Do Not Do Any Of These Things!
PROS and CONS?

PROS and CONS. Discuss
PROS and CONS?

PROS and CONS. Discuss

PRO If F is a pseudorandom function, then this scheme is CPA-secure

Intuition: If the scheme was not CPA-secure can use to predict F and hence F is not pseudorandom.

PRO Can use same key k for t messages, any t.

CON Only defined for encryption of n-bit messages

CON $\text{Enc}_k(m) = \langle r, F_k(r) \oplus m \rangle$: n-bit message requires 2^n bits.

CAVEAT Can send long message break up into n-bit chunks.

CON To send $t n$-bits messages requires $2^t n$ bits.
PROS and CONS?

PROS and CONS. Discuss

PRO If F is a pseudorandom function, then this scheme is CPA-secure

Intuition: If the scheme was not CPA-secure can use to predict F and hence F is not psuedorandom.

PRO Can use same key k for t messages, any t.

CON Only defined for encryption of n-bit messages

CON $Enc_k(m) = < r, F_k(r) \oplus m >$: n bit message requires $2n$ bits.

CAVEAT Can send long message break up into n-bit chunks.

CON To send t n-bits messages requires $2tn$ bits.
$k \leftarrow m_1, \ldots, m_t$

$c_1 \leftarrow \text{Enc}_k(m_1)$

\ldots

$c_t \leftarrow \text{Enc}_k(m_t)$
Sending Many Messages
The method: \[Enc_k(m) = \langle r, F_k(r) \oplus m \rangle \]
is secure but to send ONE \(n \)-bit message takes \(2n \) bits.

Could send \(t \) \(n \)-bit messages with \(2tn \) bits.

Goal: Send \(t \) \(n \)-bit message with \(< (1 + \epsilon)tn \) bits
Goal

The method:

$$\text{Enc}_k(m) = \langle r, F_k(r) \oplus m \rangle$$

is secure but to send ONE n-bit message takes $2n$ bits.

Could send t n-bit messages with $2tn$ bits.

Goal: Send t n-bit message with $< (1 + \epsilon)tn$ bits

securely!
Electronic Code Book (ECB) mode

1. $Enc_k(m_1, \ldots, m_t)$ //note t is arbitrary
 ▶ Send $(F_k(m_1), \ldots, F_k(m_t))$

2. Decryption? Discuss
Electronic Code Book (ECB) mode

1. $Enc_k(m_1, \ldots, m_t)$ //note t is arbitrary
 ▶ Send $(F_k(m_1), \ldots, F_k(m_t))$

2. Decryption? Discuss
 ▶ Decryption requires F_k to be invertible. That's fine.
Electronic Code Book (ECB) mode

1. $Enc_k(m_1, \ldots, m_t)$ //note t is arbitrary
 - Send $(F_k(m_1), \ldots, F_k(m_t))$

2. Decryption? Discuss
 - Decryption requires F_k to be invertible. Thats fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!
Electronic Code Book (ECB) mode

1. $Enc_k(m_1, \ldots, m_t)$ //note t is arbitrary
 ▶ Send $(F_k(m_1), \ldots, F_k(m_t))$

2. Decryption? Discuss
 ▶ Decryption requires F_k to be invertible. That's fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!

4. Drawbacks
Electronic Code Book (ECB) mode

1. $Enc_k(m_1, \ldots, m_t)$ //note t is arbitrary
 ▶ Send $(F_k(m_1), \ldots, F_k(m_t))$

2. Decryption? Discuss
 ▶ Decryption requires F_k to be invertible. Thats fine.

3. To send t n-bit messages, send t n-bit messages. Only tn bits!

4. Drawbacks This is idiotic! Deterministic!

Not CPA secure. Not EAV-secure. So why used?
Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized
Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized
(2) Used today because people are stupid
Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized
(2) Used today because people are stupid
(3) Half of the apps in the Android App Store use this.
Electronic Code Book (ECB) mode

Not CPA secure. Not EAV-secure. So why used?
(1) Was originally used before security was formalized
(2) Used today because people are stupid
(3) Half of the apps in the Android App Store use this.
(I have an iphone)
Not just a theoretical problem!

Want that when we transmit a picture secretly, Eve learns nothing, sees a blank screen or all black or something like that.
Not just a theoretical problem!

Want that when we transmit a picture secretly, Eve learns nothing, sees a blank screen or all black or something like that.

If we transmit a picture using ECB here is what Eve sees:
Not just a theoretical problem!

Want that when we transmit a picture secretly, Eve learns nothing, sees a blank screen or all black or something like that.

If we transmit a picture using ECB here is what Eve sees:

(Taken from http://en.wikipedia.org and derived from images created by Larry Ewing (lewing@isc.tamu.edu) using The GIMP.)
Counter (CTR) Mode

- $Enc_k(m_1, \ldots, m_t)$ // note: t is arbitrary
 - Choose $c_0 \leftarrow \{0, 1\}^n$
 - For $i = 1$ to t: $c_i = m_i \oplus F_k(c_0 + i \pmod{2^n})$
 - Output c_0, c_1, \ldots, c_t

- Decryption? Discuss

- Send t strings by sending one and add to it t times.
- To send t n-bit messages, send $t + 1$ n-bit messages.
CTR mode

c_t

\[F_k \]

\[m_1 \rightarrow c_0 \]

\[m_2 \rightarrow c_1 \]

\[c_2 \]

\[m_t \rightarrow c_t \]
Theorem: if F is a pseudorandom function, then CTR mode is CPA-secure.

Intuition: If CTR is not CPA-secure then can use that to show that to predict F, so F is not pseudorandom.
Cipher Block Chaining (CBC) Mode

- $Enc_k(m_1, \ldots, m_t)$ //note t is arbitrary
 - Choose random $c_0 \leftarrow \{0, 1\}^n$ (also called the IV)
 - For $i = 1$ to t: $c_i = F_k(m_i \oplus c_{i-1})$
 - Output c_0, c_1, \ldots, c_t

- Decryption? Discuss
Cipher Block Chaining (CBC) Mode

- $\text{Enc}_k(m_1, \ldots, m_t)$ //note t is arbitrary
 - Choose random $c_0 \leftarrow \{0, 1\}^n$ (also called the IV)
 - For $i = 1$ to t: $c_i = F_k(m_i \oplus c_{i-1})$
 - Output c_0, c_1, \ldots, c_t

- Decryption? Discuss
 - Decryption requires F to be invertible

- Send t strings by sending one and \oplus.
- To send t n-bit messages, send $t + 1$ n-bit messages.
CBC mode
Theorem: If F is a pseudorandom permutation, the CBC mode is CPA-secure.

Intuition: If CBC is not CPA-secure then can use that to show that to predict F, so F is not pseudorandom.