1. (0 points) READ the syllabus- Content and Policy. What is your name? Write it clearly. What is the day and time of the first midterm? Read slides on Dr. Mazurek’s lecture.

2. (25 points) Write a simple program which does the following:

 (a) INPUT: A key K, a nonce N, and a text string M
 (b) OUTPUT: Ciphertext corresponding to M encrypted under AES256-GCM (i.e. the AES algorithm with key length 256 in GCM mode) with K as the key and N as the IV.

Do this two ways and WRITE IN ENGLISH the contrast of experience: Include your code, an input of your choice, and the corresponding output. You have TWO choices:

I) Do both in PYTHON:

 (a) Cryptography library on the hw website, and
 (b) PyCrypto on the hw website

II) Do both in C (which would be harder)

 (a) C via OpenSSL on the hw website, and
 (b) libsodium on the hw website

SOLUTION TO PROBLEM TWO

Omitted

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!!
3. (20 points) Let $N = pq$ where p, q are primes. Let $m \in \{2, \ldots, N - 1\}$.

(a) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}+1}$ using repeated squaring.

(b) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}-1}$ using repeated squaring.

(c) (0 points, this is just here for information) If you did the last two problems right then $m^{2^{16}+1}$ took MUCH LESS muts than $m^{2^{16}-1}$. This is one reason why $e = 2^{16} + 1$ is so popular in RSA.

(d) (4 points) $2^{16} + 1$ is prime. Is $2^{32} + 1$ prime? If not then give its factors. (HINT- look up Fermat Primes on the web)

(e) (4 points) Why is choosing e to be prime a good thing to do?

(f) (4 points) I had said in class that we do not want to pick e too low. Roughly how big does N have to be before picking $e = 2^{16} + 1$ is a bad thing to do. How does this N compare to the number of protons in the universe? (Look up Eddington’s Number on the web)

SOLUTION TO PROBLEM TWO

a) All computations are mod p.

We compute:

m^2

$(m^2)^2 = m^4$

$(m^4)^2 = m^8$

$(m^8)^2 = m^{16}$

So to get to m^{2^i} takes i multiplications.

Hence $m^{2^{16}}$ takes 16 muts.

So $m^{2^{16}+1} = m^{2^{16}} \cdot m$ takes 17 muts.

b) Note that $2^{16} - 1 = 2^0 + 2^1 + \cdots + 2^{15}$.

We first compute, by repeated squaring, m^{2^i} for $1 \leq i \leq 15$. That takes 15 muts.

But then we have to do
\[m^2 \times m^2 \times \cdots \times m^{15} \]

which takes another 14 mults. Hence the total is 29.

d) \(2^{2^5} + 1 = 641 \times 6700417 \)

e) We need \(e \) to be rel prime to \(R \). If \(e \) is prime then it is AUTOMATICALLY rel prime to \(R \).

f) If Bob sends \(m = 2 \) then this is a problem if \(m^e < N \). So we have a problem if \(2^{65537} < N \), so \(N \sim 2^{65537} \). The number of particles in the universe is approx \(2^{256} \) which is Much smaller.

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!!!!
4. (25 points) (HINT — look up the Chinese Remainder Theorem.) Give an algorithm (pseudocode but more descriptive) for the following:

Input: $N_1, \ldots, N_L, x_1, \ldots, x_L$ where N_1, \ldots, N_L are rel prime.

Output: An x such that

\[x \equiv x_1 \pmod{N_1} \]
\[x \equiv x_2 \pmod{N_2} \]
\[\vdots \]
\[x \equiv x_L \pmod{N_L} \]

AND $0 \leq x < N_1 \cdots N_L$.

You can assume you have a program that finds inverses of numbers in mods if they exist.

Note that since all of the N_i are rel prime, for all i there exists a number which you can denote M_i^{-1} which is the inverse of M_i mod N_i, where $M_i = N_1 N_2 \cdots N_{i-1} N_{i+1} \cdots N_L$.

SOLUTION TO PROBLEM FOUR

(a) Input($N_1, \ldots, N_L, x_1, \ldots, x_L$)
(b) Let $M_i = N_1 N_2 \cdots N_{i-1} N_{i+1} \cdots N_L$.
(c) For all $1 \leq i \leq L$ find M_i^{-1} which is the inverse of M_i mod N_i
(d) Output

\[x = x_1 M_1^{-1} M_1 + \cdots + x_L M_L^{-1} M_L \pmod{N_1 \cdots N_L} \]

We prove that this works. Look at x mod N_i. All of the terms except the M_i term drop out. The M_i term is

\[x_i M_i^{-1} M_i \equiv x_i \pmod{N_i} \]

since M_i^{-1} is the inverse of M_i mod N_i, we have just x_i.

THERE ARE MORE PAGES!!!!!!!!!!!!!!!
5. (30 points) (Read the slides on low-exponent attacks on RSA.) Before getting to the specs of the psuedocode you are to write, here is the setting.

- Zelda will do RSA with \(L \) people \(A_1, \ldots, A_L \).
- Zelda is using RSA as follows: For person \(A_i \) she uses \((e, N_i)\).
- The \(N_i \) are all relatively prime.
- \(N_1 < \cdots < N_L \).
- The parameter \(e \) – we think of it as being small but the algorithm should run even if \(e \) is not small. It may report back NO could not crack.
- We assume that Zelda sent the same message to everyone. The message is \(m \). So she send \(A_i \) the number \(m^e \mod N_i \).
- You are Eve. You already have a program that will do the Chinese Remainder Theorem. That is, you have a program that will, on input \(x_1, \ldots, x_L, N_1, \ldots, N_L \) where the \(N_i \)'s are rel prime, output \(x \) such that, for all \(1 \leq i \leq L, x \equiv x_i \pmod{N_i} \).

NOW YOUR ASSIGNMENT:
Write pseudocode for a program such that

(a) **Input:** \(e, N_1 < \ldots < N_L \) and \(c_1, \ldots, c_L \). The \(N_i \) are rel prime. There is an \(m \) such that, for all \(1 \leq i \leq L, c_i = m^e \pmod{N_i} \).

(b) **Output:** Either find \(m \) as in the example in class OR say that you can’t find \(m \). Prove that if \(e \leq L \) then your algorithm does find \(m \).

SOLUTION TO PROBLEM FIVE

(a) Input: \(e, N_1, \ldots, N_L \) and \(c_1, \ldots, c_L \). The \(N_i \) are rel prime. There is an \(m \) such that, for all \(1 \leq i \leq L, c_i = m^e \pmod{N_i} \).

(b) Find (using CRT) \(x \) such that
\[
x \equiv m^e \pmod{N_1}
\]
\[
x \equiv m^e \pmod{N_2}
\]
...
\[x \equiv m^e \pmod{N_L} \]

AND

\[0 \leq x < N_1 \cdots N_L. \]

(NOTE- \(x \) is an \(e \)th power mod \(N_1, N_2, \ldots, N_L \). Hence \(x \) is an \(e \)th power mod \(N_1N_2\cdots N_L \).

(c) Try to take the normal \(e \)th root of \(x \). If you succeed (and get an integer result), that is your \(m \).

By the nature of \(x \)

\[x \equiv m^e \pmod{N_1 \cdots N_L}. \]

We are curious if the \(m^e \) calculation used wrap-around.

We know that

\[m < N_1. \]

\[m^2 < N_1N_2. \]

etc.

\[m^L < N_1N_2\cdots N_L. \]

If \(e \leq L \) then we have that \(m^e < N_1 \cdots N_L \). Hence the equation did not use wrap around so \(x \equiv m^e \) means \(x = m^e \).