1. (0 points) READ the syllabus- Content and Policy. What is your name? Write it clearly. What is the day and time of the first midterm? Read slides on Dr. Mazurek’s lecture.

2. (25 points) Write a simple program which does the following:

 (a) INPUT: A key K, a nonce N, and a text string M

 (b) OUTPUT: Ciphertext corresponding to M encrypted under AES256-GCM (i.e. the AES algorithm with key length 256 in GCM mode) with K as the key and N as the IV.

Do this two ways and WRITE IN ENGLISH the contrast of experience: Include your code, an input of your choice, and the corresponding output. You have TWO choices:

I) Do both in PYTHON:

 (a) Cryptography library on the hw website, and

 (b) PyCrypto on the hw website

II) Do both in C (which would be harder)

 (a) C via OpenSSL on the hw website, and

 (b) libsodium on the hw website

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!!!!
3. (20 points) Let $N = pq$ where p, q are primes. Let $m \in \{2, \ldots, N - 1\}$.

(a) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}+1}$ using repeated squaring.

(b) (4 points) Exactly how many multiplications do you need to compute $m^{2^{16}-1}$ using repeated squaring.

(c) (0 points, this is just here for information) If you did the last two problems right then $m^{2^{16}+1}$ took MUCH LESS mults then $m^{2^{16}-1}$. This is one reason why $e = m^{2^{16}+1}$ is so popular in RSA.

(d) (4 points) $2^{16} + 1$ is prime. Is $2^{32} + 1$ prime? If not then give its factors. (HINT- look up Fermat Primes on the web)

(e) (4 points) Why is choosing e to be prime a good thing to do?

(f) (4 points) I had said in class that we do not want to pick e too low. Roughly how big does N have to be before picking $e = 2^{16} + 1$ is a bad thing to do. How does this N compare to the number of protons in the universe? (Look up Eddington's Number on the web)

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!
4. (25 points) (HINT — look up the Chinese Remainder Theorem.) Give an algorithm (pseudocode but more descriptive) for the following:

Input: \(N_1, \ldots, N_L, x_1, \ldots, x_L \) where \(N_1, \ldots, N_L \) are rel prime.

Output: An \(x \) such that

\[
\begin{align*}
 x &\equiv x_1 \pmod{N_1} \\
 x &\equiv x_2 \pmod{N_2} \\
 &\vdots \\
 x &\equiv x_L \pmod{N_L}
\end{align*}
\]

AND \(0 \leq x < N_1 \cdots N_L \).

You can assume you have a program that finds inverses of numbers in mods if they exist.

Note that since all of the \(N_i \) are rel prime, for all \(i \) there exists a number which you can denote \(M_i^{-1} \) which is the inverse of \(M_i \mod N_i \), where

\[
M_i = N_1 N_2 \ldots N_{i-1} N_{i+1} \ldots N_L.
\]

THERE ARE MORE PAGES!!!!!!!!!!!!!!!!!!
5. (30 points) (Read the slides on low-exponent attacks on RSA.) Before getting to the specs of the pseudocode you are to write, here is the setting.

- Zelda will do RSA with \(L \) people \(A_1, \ldots, A_L \).
- Zelda is using RSA as follows: For person \(A_i \) she uses \((e, N_i)\).
- The \(N_i \) are all relatively prime.
- \(N_1 < \cdots < N_L \).
- The parameter \(e \) – we think of it as being small but the algorithm should run even if \(e \) is not small. It may report back NO could not crack.
- We assume that Zelda sent the same message to everyone. The message is \(m \). So she send \(A_i \) the number \(m^e \mod N_i \).
- You are Eve. You already have a program that will do the Chinese Remainder Theorem. That is, you have a program that will, on input \(x_1, \ldots, x_L, N_1, \ldots, N_L \) where the \(N_i \)'s are rel prime, output \(x \) such that, for all \(1 \leq i \leq L \), \(x \equiv x_i \mod N_i \).

NOW YOUR ASSIGNMENT:
Write pseudocode for a program such that

(a) **Input:** \(e, N_1 < \ldots < N_L \) and \(c_1, \ldots, c_L \). The \(N_i \) are all rel prime. There is an \(m \) such that, for all \(1 \leq i \leq L \), \(c_i = m^e \mod N_i \).

(b) **Output:** Either find \(m \) as in the example in class OR say that you can’t find \(m \) Prove that if \(e \leq L \) then your algorithm does find \(m \).