1. (0 points) READ the syllabus- Content and Policy. What is your name? Write it clearly. What is the day and time of the first midterm? Read slides on Dr. Mazurek’s lecture.

2. (20 points) Write a simple program to encrypt, then decrypt a text string. Do this two ways and WRITE IN ENGLISH the contrast of experience: Include your code.

You have TWO choices:

I) Do both in PYTHON:

(a) Cryptography library on the hw website, and
(b) PyCrypto on the hw website

II) Do both in C (which would be harder)

(a) C via OpenSSL on the hw website, and
(b) libsodium on the hw website
3. (15 points) Let $N = pq$ where p, q are primes. Let $m \in \{2, \ldots, N - 1\}$.

(a) (3 points) Exactly how many multiplications do you need to compute $m^{2^{16}+1}$ using repeated squaring.

(b) (3 points) Exactly how many multiplications do you need to compute $m^{2^{16}-1}$ using repeated squaring.

(c) (0 points, this is just here for information) If you did the last two problems right then $m^{2^{16}+1}$ took MUCH LESS mults then $m^{2^{16}-1}$. This is one reason why $e = m^{2^{16}+1}$ is so popular in RSA.

(d) (3 points) $2^{16} + 1$ is prime. Is $2^{32} + 1$ prime? If not then give its factors. (HINT- look up Fermat Primes on the web)

(e) (3 points) Why is choosing e to be prime a good thing to do?

(f) (3 points) I had said in class that we do not want to pick e to low. Roughly how big does N have to be before picking $e = 2^{16} + 1$ is a bad thing to do. How does this N compare to the number of protons in the universe? (Look up Eddington’s Number on the web)
4. (20 points) (HINT- look up The Chinese remainder Theorem.) Given an algorithm (pseudocode but more descriptive) for the following:

Input: $N_1, \ldots, N_L, x_1, \ldots, x_L$ where N_1, \ldots, N_L are rel prime.

Output: An x such that

$x \equiv x_1 \pmod{N_1}$

$x \equiv x_2 \pmod{N_2}$

\vdots

$x \equiv x_L \pmod{N_L}$

You can assume you have a program that finds inverses of numbers in primes if they exist. Note that since the N_i’s are all rel prime to each other, for all i, j, there is an inverse of $N_i \pmod{N_j}$.
5. (20 points) (Read the slides on low-exponent attacks on RSA.) Before getting to the specs of the pseudocode you are to write, here is the setting.

- Zelda will do RSA with L people A_1, \ldots, A_L.
- Zelda is using RSA as follows: For person A_i she uses (e, N_i).
- The N_i are all relatively prime.
- The parameter e – we think of it as being small but the algorithm should run even if e is not small. It may report back NO could not crack.
- We assume that Zelda send the same message to everyone. The message is m. So she sends A_i the number $m^e \mod N_i$.
- You are Eve. You already have a program that will do the Chinese Remainder Theorem. That is, you have a program that will, on input x_1, \ldots, x_L, N_1, \ldots, N_L where the N_i’s are rel prime, output x such that, for all $1 \leq i \leq L$, $x \equiv x_i \pmod{N_i}$. Denote this $CRT(x_1, \ldots, x_L; N_1, \ldots, N_L)$.

NOW YOUR ASSIGNMENT:

Write a program such that

(a) **Input:** e, N_1, \ldots, N_L and c_1, \ldots, c_L. You are promised that there is an m such that, for all $1 \leq i \leq L$, $c_i = m^e \pmod{N_i}$.

(b) **Output:** Either find m as in the example in class OR say that you can’t find m