1. (10 points) READ the syllabus- Content and Policy. READ my NOTES on ciphers and on English. What is your name? Write it clearly. What is the day and time of the first midterm?

2. (20 points) (READ ON YOUR OWN about the Playfair Cipher from Wikipedia) Alice and Bob are going to use the Playfair Cipher. They are going to use keyword Jeremy. The Wikipedia article lists several possible conventions, but we will use the following: They will never use Z so they leave out Z from their encoding block. If a message has an odd number of letter then tack on a x at the end to make it even. When we need an uncommon letter for the case of two letter that are the same, we use x. Finally, fill in the rest of the alphabet in the table row by row going from left to right.

(a) (10 points) Write down the 5 × 5 encoding block

(b) (10 points) Use this table to encode Muffin

SOLUTION TO PROBLEM TWO

a) Note that Jeremy becomes jermy for our purposes.

<table>
<thead>
<tr>
<th>j</th>
<th>e</th>
<th>r</th>
<th>m</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>g</td>
<td>h</td>
<td>i</td>
<td>k</td>
<td>l</td>
</tr>
<tr>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>s</td>
</tr>
<tr>
<td>t</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td>x</td>
</tr>
</tbody>
</table>

b) Muffin! We remove capitals and punctuation and break into blocks of TWO

mu ff in

mu:

<table>
<thead>
<tr>
<th>j</th>
<th>E</th>
<th>r</th>
<th>M</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>g</td>
<td>h</td>
<td>i</td>
<td>k</td>
<td>l</td>
</tr>
<tr>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>s</td>
</tr>
<tr>
<td>t</td>
<td>U</td>
<td>v</td>
<td>W</td>
<td>x</td>
</tr>
</tbody>
</table>
m,u are in diff rows and columns.

The rule is that we output the letter on the same ROW as m (the first letter) and then the letter on the same ROW as the second letter u, which is EW.

ff:

\[
\begin{array}{cccccccc}
\text{j} & \text{e} & \text{r} & \text{m} & \text{y} \\
\text{a} & \text{b} & \text{c} & \text{d} & \text{F} \\
\text{g} & \text{h} & \text{i} & \text{k} & \text{l} \\
\text{n} & \text{o} & \text{p} & \text{q} & \text{s} \\
\text{t} & \text{u} & \text{v} & \text{w} & \text{X} \\
\end{array}
\]

They are in the same column so we go to the letter below, so LY

in:

\[
\begin{array}{cccccccc}
\text{j} & \text{e} & \text{r} & \text{m} & \text{y} \\
\text{a} & \text{b} & \text{c} & \text{d} & \text{f} \\
\text{g} & \text{h} & \text{I} & \text{k} & \text{l} \\
\text{N} & \text{o} & \text{p} & \text{q} & \text{s} \\
\text{t} & \text{u} & \text{v} & \text{w} & \text{x} \\
\end{array}
\]

GP

FINAL ANSWER: EWMYGP

GO TO NEXT PAGE
3. (30 points) PROGRAMMING ASSIGNMENT.

 (a) (10 points) Write a program that does the following:

 Input: A text T of English. The first thing you do is convert the
 letters to numbers, a ← 0, b ← 1, etc. (and run it on a sample
text. Program and output should be included in submission).

 Output:

 i. An array A[0], ..., A[25] such that A[i] is how many times i
 appeared in T.

 ii. An array B[0], ..., B[25] such that B[i] is the fraction of the
time i appeared in T. Express as reals, not fractions. For ex-
ample, we want 0.425, not 17/40. (So B[i] = A[i] / (Σ_{i=0}^{25} A[i])).

 (b) (10 points) Write a program that does the following. (and run
it on a sample text. Program and output should be included in
submission).

 Input: An array B of length 26 of reals that adds to 1 (it might
be approx 1) and a number s, 0 ≤ s ≤ 25.

 Output: Take B and circular shift it by s for form C. For example
if s = 1 then the array C is B[25]B[0]B[1]...B[24]. Do NOT
output C. Output Σ_{i=0}^{25} B[i] * C[i].

 (c) (10 points) Write a program that does the following (and run it
on a sample text. Program and output should be included in
submission).

 Input: A long test T.

 Output: A 26-long table of DOT-PRODUCT-ING the Freq vec-
tor from T (which you got in the first program) with circular
shifts 0, 1, 2, ..., 25 of itself. Output alongside the dot products
the amount that it was shifted by.

 Note: We expect to find that shifting by 0 we get 0.065 or so and
shifting by anything else we get 0.038 or so. If you do not get this
then recheck your work but it may still be correct if your text T
is unusual in some way.
4. (20 points) In class we described the Randomized Shift Cipher. Describe the Randomized Affine Cipher and give a small example of its use (Analogous to the slides with title How to Fix without a Long Key, and the following slide titled Example. Your example should involve encoding ABAB. (Note that it should NOT map to anything of the form XYXY.)

SOLUTION TO PROBLEM FOUR

Let

$$S = \{(a, b) \mid 0 \leq a, b \leq 25, a \text{ is rel prime to 26}\}$$

The key is a function from S to S. To send message (m_1, \ldots, m_L) (each m_i a character) Alice does the following:

(a) Pick random $r_1, \ldots, r_L \in S$.
(b) For $1 \leq i \leq L$ let compute $f(r_i) = (a_i, b_i)$.
(c) Send $(r_1, a_1m_1 + b_1), \ldots, (r_L, a_Lm_L + b_L)$.

To decode $(r_1, c_1), \ldots, (r_L, c_L)$ Bob does the following.

(a) For $1 \leq i \leq L$ compute $f(r_i) = (a_i, b_i)$.
(b) For each a_i find a_i^{-1}. It exists since a_i is rel prime to 26.
(c) Decode as $(a_1^{-1}c_1 + b_1, \ldots, a_L^{-1}c_L + b_L)$

Example:

The key is $f(a, b) = (b + 1, a + 2)$ (all of the math is mod 26). Clearly f is a bijection.

We want to code ABAB which is 0101.

Need four ordered pairs.
Pick random (2,5), maps to (6,4), so 0 maps to $6 \times 0 + 4 = 4$ which is e
Pick random (3,6), maps to (7,5), so 1 maps to $7 \times 1 + 5 = 12$ which is m
Pick random (10,2), maps to (3,12), so 0 maps to $3 \times 0 + 12 = 12$ which is m
Pick random $(15,7)$, maps to $(8,17)$, so 1 maps to $8 \times 1 + 17 = 25$ which is z

So Alice sends $emmz$.

5. (10 points) Alice and Bob are going to use the 1-time pad. They will meet and generate randomly a 999,999,999-bit key. The first message Alice wants to send to Bob is 110011. What is the probability that Alice sends 000000? How about 110011? How about 111000?

SOLUTION TO PROBLEM FIVE

The prob that the first message is 110011 is the prob that the key is a particular 6-bit string. Since the key is uniformly random, that prob is $\frac{1}{2^6}$. Same for all of the 6-bit strings given above.

6. (10 points) (Please do by hand – the numbers do not get that big.)

 (a) Which numbers in $\{1, 2, 3, \ldots, 14\}$ have an inverse mod 15?

 (b) For all such numbers, give the inverse.

SOLUTION TO PROBLEM SIX

a) The numbers are 1,2,4,7,8,11,13,14.

b) I also tell you my thought process. One thing- we are always on the lookout for 16, 31, 46 which are all 1 mod 15.

1 has inverse 1

2 has inverse 8 since $2 \times 8 = 16 \equiv 1 \pmod{15}$.

4 has inverse 4 since $4 \times 4 = 16 \equiv 1 \pmod{15}$

7 has inverse – AH, this one looks hard since none of 16,31,46 is a multiple of 7. note that $16 \equiv 2 \pmod{7}$, $31 \equiv 3 \pmod{7}$, $46 \equiv 4 \pmod{7}$, so we need to add $3 \times 15 = 45$ to get $46+45=91$. AH 7 = 91 \equiv 1, so the inverse if 7 is 13.

8 has inverse 2

11 AH- noting that 2,4,7,8,13 can’t work, and since $14 \equiv -1 \pmod{15}$ will be its own inverse, the only number left for 11 is ... 11. $11 \times 11 \equiv 121 \equiv 1$, OH, so 11 has inverse 11.

14 has inverse 14.