1. (0 points) What is your name? Write it clearly. What day is the midterm? Staple your HW.

2. (40 points)

 (a) (10 points) Write a DFA for \(\{a, b\}^* \). How many states does it have?

 (b) (10 points) Write a DFA for \(\{a, b\}^3 \). How many states does it have?

 (c) (10 points) Write a NDFA for \(\{a, b\}^* \{a, b\}^3 \) by using the procedure to take two DFA’s and produce an NFA for the concat of the two languages. How many states does it have?

 (d) (10 points) Write a DFA for \(\{a, b\}^* \{a, b\}^3 \). Use the powerset construction. How many states does it have?

3. (30 points) If \(x \) is a string then \(x^R \) is that string reversed. For example \((aaab)^R = baaa\).

 If \(L \) is a language then

 \[
 L^R = \{w^R : w \in L\}
 \]

 (a) Show that if \(L \) is regular than \(L^R \) is regular.

 (b) Find a function \(f \) such that the following is true:

 (c) If \(L \) is regular via DFA \(M \) of size \(n \) then there exists a DFA for \(L^R \) with \(\leq O(f(n)) \) states.

THERE IS ONE MORE PAGE
4. (30 points) Let L be the following set of infinite strings of 0’s and 1’s:

$$L = \{ w : w \text{ has an infinite number of 1’s } \}.$$

Write a DFA M such that:
If $w \in L$ then if you run M on w you will hit an accept state infinitely often.
If $w \notin L$ then if you run M on w you will hit an accept state finitely often (possibly zero).