1. (0 points) Write your name! READ cipher and english.

2. (22 points) Compute each of the following using the repeated squaring method. Show all work.

 (a) \(2^{100}\pmod{17}\)
 (b) \(2^{1000}\pmod{17}\).

 SOLUTION TO PROBLEM TWO

Omitted

END OF SOLUTION TO PROBLEM TWO

3. (24 points) In this problem we guide you to a technique to find \(3^{100,000,000,000,000}\pmod{7}\) in reasonable time. Realize that repeated squaring won’t be fast enough. All math in this problem is mod 7.

 (a) Compute \(3^0, 3^1, 3^2, \ldots, 3^{10}\) all mod 7.
 (b) From the above try to find a pattern and a formula for \(3^n\).
 (c) Use the formula to find \(3^{100,000,000,000,001}\pmod{7}\).

 SOLUTION TO PROBLEM THREE

1)

\[
\begin{align*}
3^0 &\equiv 1 \\
3^1 &\equiv 3 \times 1 \equiv 3 \\
3^2 &\equiv 3 \equiv 9 \equiv 2 \\
3^3 &\equiv 3 \times 2 \equiv 6 \\
3^4 &\equiv 3 \times 6 \equiv 3 \times -1 \equiv -3 \equiv 4 \\
3^5 &\equiv 3 \times 4 \equiv 12 \equiv 5 \\
3^6 &\equiv 3 \times 5 \equiv 15 \equiv 1. \\
3^7 &\equiv 3 \equiv 1 \equiv 3 \\
3^8 &\equiv 2
\end{align*}
\]
\[3^9 \equiv 3 \equiv 2 \equiv 6 \]
\[2^{10^3} \equiv 6 \equiv 4 \]

2)
AH- the pattern seems to be 1, 3, 2, 6, 4, 5 then REPEAT SO

If \(n \equiv 0 \pmod{6} \) then \(3^n \equiv 1 \)
If \(n \equiv 1 \pmod{6} \) then \(3^n \equiv 3 \)
If \(n \equiv 2 \pmod{6} \) then \(3^n \equiv 2 \)
If \(n \equiv 3 \pmod{6} \) then \(3^n \equiv 6 \)
If \(n \equiv 4 \pmod{6} \) then \(3^n \equiv 4 \)
If \(n \equiv 5 \pmod{6} \) then \(3^n \equiv 5 \)

3)
\[3^{100,000,000,000,000} \pmod{7}. \]
Need to know 100, 000, 000, 000, 001 \(\pmod{6} \).
100, 000, 000, 000, 001 is odd so \(\equiv 1 \) OR 3 OR 5 \(\pmod{6} \).
Hence 100, 000, 000, 000, 000 \(\equiv 2 \pmod{3} \) so \(\equiv 2 \) or 5 \(\pmod{6} \).
Hence \(2^{100,000,000,000,000} \equiv 5 \pmod{7} \).

END OF SOLUTION TO PROBLEM THREE

4. (27 points)

(a) Alice and Bob do Diffie Helman with \(p = 53, \ g = 4, \ a = 5, \ b = 6 \)
What does Alice send? What does Bob send? What is the shared secret key?

(b) Alice and Bob do Diffie Helman with \(p = 53, \ g = 4, \ a = 6, \ b = 5 \).
What does Alice send? What does Bob send? What is the shared secret key?

(c) If you did the problems above correctly then they had the same answer. Is this a coincidence or is there a reason for it?
SOLUTION TO PROBLEM FOUR

a) All equations are mod 53
Alice sends $g^a = 4^5$
$4^2 = 16$
$4^4 = 16^2 = 256 = 44$
$4^5 = 4^4 \times 4 = 44 \times 4 = 17$
Alice sends 17
Bob sends- we omit that
Secret is $17^6 = 44$

b) Omitted

c) If Alice sends a and Bob b sends be then secret is g^{ab}.
If Alice sends b and Bob sends a then secret is g^{ab}
So not a coincidence.

END OF SOLUTION TO PROBLEM FOUR

5. (27 points) Alex wants to use the prime 101 for Diffie Helman.

(a) In order to determine if a number, g, is a generator, what does Alex have to do?

(b) Is picking 101 a bad idea?

(c) Give a prime between 100 and 200 that would be a good one to use.

SOLUTION TO PROBLEM FIVE

The nontrivial factors of 100 are 2,5,10,20,25,50. Alex needs to raise g to all of these powers. If any are 1 then g is NOT a generator, else it is.

101 is a bad idea since the number of divisor is large
Lets look at primes over 100 until we find a safe one.
101: 101-1=100=2*50. 50 is NOT PRIME so NO
103: 103-1=102=2*51. 51 is NOT PRIME so NO
107: 107-1=106=2*53. 53 IS PRIME so
answer is 107.

END OF SOLUTION TO PROBLEM FIVE