1. (40 points)

(a) (20 points) We are working in binary so all numbers are 0’s and 1’s. When we input 2 bits to a circuit we think of it as a NUMBER in base 2.
00=0
01=1
10=2
11=3
The output will be 3 bits, intepreted as a number in base 2.
000=0, . . . , 111=7
Write a truth table with 2 inputs and 3 outputs for the following function:
\[f(xy) = (xy)^2 \pmod{8}. \]
So for example
\[f(11) \] is computed by 11=3, \(3^2 = 9 \pmod{8} = 1 \), so the output is 001.

(b) (20 points) Write a circuit for \(f \) using AND, OR, and NOT using the method shown in class (do not simplify- that would make it harder for the TA’s to grade!)

GO TO NEXT PAGE!!!!!!!!!!!!!!!!!!!!!
2. (60 points) In this problem the inputs are considered bits that you add. So if the input is (1, 0, 1) it is NOT 101 in base 2 which is 5. Its just three bits, separate.

The Depth of a circuit is the max number of gates from input to output. The Size of a circuit is the total number of gates.

ALSO- we allow for input the variables AND their negations.

In this problem we will look at different circuits for:

\[f_n(x_1, \ldots, x_n) = x_1 + \cdots + x_n \pmod{2}. \]

We allow AND, OR and NOT gates usual; however, the AND and OR gates can take MANY inputs (as many as you want).

You can assume that \(n \) is a power of two if it makes the math easier.

(a) (30 points) Show that, for all \(n \), there is a circuit for \(f_n \) with depth 2. What is the circuit’s size?

(b) (30 points) Show that, for all \(n \), there is a circuit for \(f_n \) with size \(O(n) \) (less than some constant times \(n \)). What is the constant? What is the depth of the circuit? (HINT: First get a circuit for \(f_2(x_1, x_2) \). View this as a gate you can use. Use that

\[f_n(x_1, \ldots, x_n) = f_{n/2}(f_2(x_1, x_2), f(x_3, x_4), \ldots, f(x_{n-1}, x_n)). \]

(c) (0 points but think about) In part 1 you got a CONSTANT DEPTH but LARGE SIZE circuit. In part 2 you got a SMALL SIZE but LOG DEPTH circuit. Is there a circuit for \(f_n \) which is constant depth and small size?