
Parser for Abstract Meaning Representation using Learning to Search

Sudha Rao1,3∗, Yogarshi Vyas1,3∗, Hal Daumé III1,3, Philip Resnik2,3

1Computer Science, 2Linguistics, 3UMIACS
University of Maryland

raosudha@cs.umd.edu, yogarshi@cs.umd.edu, hal@cs.umd.edu, resnik@umd.edu

Abstract

We develop a novel technique to parse
English sentences into Abstract Meaning
Representation (AMR) using SEARN, a
Learning to Search approach, by modeling
the concept and the relation learning in a
unified framework. We evaluate our parser
on multiple datasets from varied domains
and show an absolute improvement of 2%
to 6% over the state-of-the-art. Addition-
ally we show that using the most frequent
concept gives us a baseline that is stronger
than the state-of-the-art for concept pre-
diction. We plan to release our parser for
public use.

1 Introduction

Abstract Meaning Representation (Banarescu et
al., 2013) is a semantic representation which is
a rooted, directed, acyclic graph where the nodes
represent concepts (words, PropBank (Palmer et
al., 2005) framesets or special keywords) and the
edges represent relations between these concepts.
Figure 1 shows the complete AMR for a sample
sentence.

The key motivation behind developing AMR
was to have a comprehensive and broad-coverage
semantic formalism that puts together the best in-
sights from a variety of semantic annotations (like
named entities, co-reference, semantic relations,
discourse connectives, temporal entities, etc.) in
a way that would enable it to have the same kind
of impact that syntactic treebanks have on natu-
ral language processing tasks. Currently, there are
approximately 20,000 sentences which have been
annotated with their AMRs, but for such a repre-
sentation to be useful for almost any NLP task, a
larger set of annotations would be needed. Algo-
rithms that can perform automatic semantic pars-

∗The first two authors contributed equally to this work.

read-01

i book

name forest

Stories

from

Nature

ARG0
ARG1

name

topic

op1
op2

op3

Figure 1: AMR graph for the sentence “I read a
book, called Stories from Nature, about the forest.”

ing of sentences into AMR can help alleviate the
problem of paucity of manual annotations.

Automatic semantic parsing for AMR is still in
a nascent stage. There have been two published
approaches for automatically parsing English sen-
tences into AMR. Flanigan et al. (2014) use a
semi-Markov model to first identify the concepts,
and then find a maximum spanning connected sub-
graph that defines the relations between these con-
cepts. The other approach (Wang et al., 2015) uses
a transition-based algorithm to convert the depen-
dency representation of a sentence to its AMR.

In this work, we develop a novel technique
for AMR parsing that uses SEARN (Daumé III et
al., 2009), a Learning to Search (L2S) algorithm.
SEARN and other L2S algorithms have proven to
be highly effective for tasks like part-of-speech
tagging, named entity recognition (Daumé III et
al., 2014), and for even more complex structured
prediction tasks like coreference resolution (Ma
et al., 2014) and dependency parsing (He et al.,
2013). Using SEARN allows us to model the learn-



I read a book called Stories from Nature

i read-01 NULL book NULL

call-01

called

Stories

story

NULL

from

NULL

Nature

NULL

(a) Concept prediction stage: Shaded nodes indicate predicted concepts (Current state). The middle row represents the oracle
action. Other rows represents other possible actions.

r

i b

ARG0

(b) Sample current state for re-
lation prediction

i

r

b i

r

b i

r

b

ARG0

ARG1

ARG0

mod

ARG0

(c) Three possible actions given the current state for relation prediction, the last one being the
true relation i.e. no edge

Figure 2: Using SEARN for AMR parsing

ing of concepts and relations in a unified frame-
work which aims to minimize the loss over the en-
tire predicted structure, as opposed to minimizing
the loss over concepts and relations in two separate
stages, as is done by Flanigan et al (2014).

There are three main contributions of this work.
Firstly, we provide a novel algorithm based on
SEARN to parse sentences into AMRs. Addi-
tionally, our parser extracts possible ‘candidates’
for the right concepts and relations from the en-
tire training data, but only uses smaller sentences
to train the learning algorithm. This is impor-
tant since AMR annotations are easier to obtain
for smaller sentences. Secondly, we evaluate
our parser on datasets from various domains, un-
like previous works, which have been restricted
to newswire text. We observe that our parser
performs better than the existing state-of-the-art
parser, with an absolute improvement of 2 to 6
% over the different datasets. Finally, we show
that using the most frequently aligned concept for
each word in the sentence (as seen in the train-
ing data) as the predicted concept, proves to be a
strong baseline for concept prediction. This base-
line does better than existing approaches, and we
show that our parser performs as well as the base-
line at this part of the task in some datasets, and
even better in some others.

The rest of this paper is organized as follows.
In the next section, we briefly review SEARN and
explain its various components with respect to our
AMR parsing task. Section 3 describes our main
algorithm along with the strategies we use to deal
with the large search space of the search prob-
lem. We then describe our experiments and results
(Section 4).

2 Using SEARN

The task of generating an AMR given a sentence
is a structured prediction task where the structure
that we are trying to predict is a singly rooted,
connected directed graph with concepts (nodes)
and relations (edges). In this work, we design an
AMR parser that learns to predict this structure
using SEARN. SEARN solves complex structured
prediction problems by decomposing it into clas-
sification problems. It does so by decomposing
the structured output, y, into a sequence of deci-
sions y1, y2, ..., ym and then using a classifier to
make predictions for each component in turn, al-
lowing for dependent predictions. We decompose
the AMR prediction problem into the three prob-
lems of predicting the concepts of the AMR, pre-
dicting the root and then predicting the relations
between the predicted concepts (explained in more
detail under section 3). Below, we explain how we



use SEARN, with reference to a running example
in Figure 2.

SEARN works on the notion of a policy which
can be defined as “what is the best next action (yi)
to take” in a search space given the current state
(s = (x, y1, y2, .., yi−1)), where x is the input.
For our problem, a state during the concept pre-
diction phase is defined as the concepts predicted
for a part of the input sentence. Similarly, a state
during the relation prediction phase is defined as
the set of relations predicted for certain pairs of
concepts obtained during the concept prediction
stage. (In Figure 2a (concept prediction), the cur-
rent state corresponds to the concepts {‘i’, ‘read-
01’, ‘book’} predicted for a part of the sentence.
In Figure 2c (relation prediction), the current state
corresponds to the relation ‘ARG0’ predicted be-
tween ‘r’ and ‘i’ )

At training time, SEARN operates in an iterative
fashion. It starts with some initial policy and given
an input x, makes a prediction y = y1, y2, ..., ym
using the current policy. For each prediction yi it
generates a set of cost-sensitive multi-class classi-
fication examples each of which correspond to a
possible action (a) the algorithm can take given
the current state. Each example can be defined
using local features and features that depend on
previous predictions. The possible set of next ac-
tions in our concept prediction phase corresponds
to the set of possible concepts the next word can
take. The possible set of next actions in our rela-
tion prediction phase corresponds to the set of pos-
sible relations the next pair of concepts can take.
(In Figure 2a (concept prediction), the next action
is assigning one of {‘call-01’, ‘called’, NULL} to
the word ‘called’. In Figure 2c (relation predic-
tion), the next action is assigning one of {‘ARG1’,
‘mod’, NO-EDGE} to the pair of concept ‘b’ and
‘i’).

During training, SEARN has access to an “ora-
cle” policy which gives the true best action (a∗)
given the current state . Our oracle returns the cor-
rect concept and relation labels in the concept pre-
diction and relation prediction phase respectively.
(In Figure 2a (concept prediction), the oracle will
return NULL and in Figure 2c (relation prediction),
the oracle will return NO-EDGE). SEARN then cal-
culates the loss between a and a∗ using a pre-
specified loss function. It then computes a new
policy based on this loss and interpolates it with
the current policy to get an updated policy, before

moving on to the next iteration.
At test time, predictions are made greedily us-

ing the policy learned during training time.

3 Methodology

3.1 Learning technique

Algorithm 1
1: for each span si do
2: ci = predict concept(si)
3: end for
4: croot = predict root([c1, ..., cn])
5: for each concept ci do
6: for each j < i do
7: r(i,j) = predict relation(ci, cj)
8: r(j,i) = predict relation(cj , ci)
9: end for

10: end for

We use SEARN as described in section 2 to learn
a model that can successfully predict the AMR y
for a sentence x. The sentence x is composed of
a sequence of spans (s1, s2, ..., sn) each of which
can be a single word or a span of words (We de-
scribe how we go from a raw sentence to a se-
quence of spans in Section 4.2). Given that our
input has n spans, we first decompose the struc-
ture into a sequence of n2 + 1 predictions D =
(C,ROOT,R), where

C = c1, c2, ..., cn - where ci is the concept pre-
dicted for span si

ROOT is the decision of choosing one of the
predicted concepts as the root (croot) of the AMR

R = r2,∗, r∗,2, r3,∗, r∗,3, ..., rn,∗, r∗,n - where
ri,∗ are the predictions for the directed relations
from ci to cj ∀j < i, and r∗,i are the predictions
for the directed relations from cj to ci ∀j < i. We
constrain our algorithm to not predict any incom-
ing relations to croot.

During training time, the possible set of ac-
tions for each prediction is given by the k-best
list, which we will describe in Section 3.2. We
use Hamming Loss as our loss function. Under
Hamming Loss, the oracle policy is simply choos-
ing the right action for each prediction. Since this
loss is defined on the entire predicted output, the
model learns to minimize the loss for concepts and
relations jointly.

Algorithm 1 describes the sequence of pre-
dictions to be made in our problem. We learn
three different policies corresponding to each of



Feature label Description
wi−2, wi−i, wi, wi+1, wi+2 Words in si and context
pi−2, pi−i, pi, pi+1, pi+2 POS tags of words in si and context

NEi Named entity tags for words in si
si Binary feature indicating whether wi is(are) stopword(s)

depi All dependency edges originating from words in wi

bc Binary feature indicating whether c is the most frequently aligned
concept with si or not

ci−2, ci−1 Predicted concepts for two previous spans
c Concept label and its conjunction with all previous features

framei and sensei If the label is a PropBank frame (e.g. ‘see-01’, use the frame
(‘see’) and the sense(‘01’) as additional features.

Table 1: Concept prediction features for span si and concept label ci

Feature label Description
ci, cj , ci ∧ cj The two concepts and their conjunction

wi, wj , wi ∧ wj Words in the corresponding spans and their conjunction
pi, pj , pi ∧ pj POS tags of words in spans and their conjunction

depij All dependency edges with tail in wi and head in wj

dir Binary feature which is true iff i < j

r Relation label and its conjunction with all other features

Table 2: Relation prediction features for concepts ci and cj and relation label r

Feature label Description
ci Concept label. If the label is a PropBank frame (e.g. ‘see-01’, use

the frame (‘see’) and the sense(‘01’) as additional features.
wi Words in si, i.e. the span corresponding to ci
pi POS tags of words in si

is dep rooti Binary feature indicating whether one of the words in si is the
root in the dependency tree of the sentence

Table 3: Root prediction features for concept ci

the functions predict concept, predict root and
predict relation. The learner in each stage uses
features that depend on predictions made in the
previous stages. Tables 1, 2 and 3 describe the
set of features we use for the concept prediction,
relation prediction and root prediction stages re-
spectively.

3.2 Selecting k-best lists

For predicting the concepts and relations using
SEARN, we need a candidate-list (possible set of
actions) to make predictions from.

Concept candidates: For a span si, the
candidate-list of concepts, CL-CONsi is the set of
all concepts that were aligned to si in the training

data. If si has not been seen in the training data,
CL-CONsi consists of the lemmatized span, Prop-
Bank frames (for verbs) obtained using the Unified
Verb Index (Schuler, 2005) and the NULL concept.

Relation candidates: The candidate list of re-
lations for a relation from concept ci to concept cj ,
CL-RELij , is the union of the following three sets:

• pairwisei,j - All directed relations from ci to
cj when ci and cj occurred in the same AMR,
• outgoingi - All outgoing relations from ci,

and
• incomingj - All incoming relations into cj .

In the case when both ci and cj have not been
seen in the training data, CL-RELij consists of all



relations seen in the training data. In both cases,
we also provide an option NO-EDGE which indi-
cates that there is no relation between ci and cj .

3.3 Pruning the search space
To prune the search space of our learning task,
and to improve the quality of predictions, we use
two observations about the nature of the edges of
the AMR of a sentence, and its dependency tree,
within our algorithm.

First, we observe that a large fraction of the
edges in the AMR for a sentence are between con-
cepts whose underlying spans (more specifically,
the words in these underlying spans) are within
two edges of each other in the dependency tree
of the sentence. Thus, we refrain from calling
the predict relation function in Algorithm 1 be-
tween concepts ci and cj if each word in wi is three
or more edges away from all words in wj in the
dependency tree of the sentence under considera-
tion, and vice versa. This implies that there will be
no relation rij in the predicted AMR of that sen-
tence. This doesn’t affect the number of calls to
predict relation in the worst case (n2 − n, for a
sentence with n spans), but practically, the number
of calls are far fewer. Also, to make sure that this
method does not filter out too many AMR edges,
we calculated the percentage of AMR edges that
are more than two edges away in dependency tree.
We found this number to be only about 5% across
all our datasets.

Secondly, and conversely, we observe that for a
large fraction of words which have a dependency
edge between them, there is an edge in the AMR
between the concepts corresponding to those two
words. Thus, when we observe two concepts ci
and cj which satisfy this property, we force our
predict relation function to assign a relation rij
that is not NULL.

3.4 Training on smaller sentences
For a sentence containing n spans, Algorithm 1
has to make n2 predictions in the worst case, and
this can be inhibitive for large values of n. To
deal with this, we use a parameter to indicate a
cut-off on the length of a sentence (C), and only
use sentences whose length (number of spans) is
less than or equal to C. This parameter can be
varied based on the size of the training data and
the distribution of the length of the sentences in
the training data. Setting a higher values of C will
cause the model to use more sentences for train-

ing, but spend longer time, whereas lower values
will train quickly on fewer sentences. In our ex-
periments, a C-value between 10 and 15 gave us
the best balance between training time, and num-
ber of examples considered.

4 Experiments and Results

4.1 Dataset and Method of Evaluation

We use the publicly available AMR Annotation
Release 1.0 (LDC2014T12) corpus for our ex-
periments. This corpus consists of datasets from
varied domains such as online discussion forums,
blogs, and newswire, with about 13,000 sentence-
AMR pairs. Previous works have only used one of
these datasets for evaluation (proxy), but we eval-
uate our parser on all of them. Additionally, we
also use the freely available AMRs for The Little
Prince, (lp) 1 which is from a more literary do-
main. All datasets have a pre-specified training
and test split (Table 4).

As stated earlier (Sections 3.2 and 3.4), we use
the entire training set to extract the candidate lists
for concept prediction and relation prediction, but
train our learning algorithm on only a subset of the
sentence-AMR pairs in the training data, which is
obtained by selecting sentences having less than
a fixed number of spans (C, set to 10 for all our
experiments). Table 4 also mentions the number of
sentences in each training dataset that are of length
≤ C (column Training (≤ C)).

Dataset Training Training (≤ C) Test
bolt 1061 119 133

proxy 6603 1723 823
xinhua 741 115 86

dfa 1703 438 229
lp 1274 584 173

Table 4: Dataset statistics. All figures represent
number of sentences.

We compare our results against those of the
JAMR parser 2 of Flanigan et. al (2014) 3. We run
the parser with the configuration that is specified
to give the best results.

The evaluation of predicted AMRs is done using

1http://amr.isi.edu/download.html
2https://github.com/jflanigan/jamr
3The transition-based parser by Wang et al. () is newer,

but the latest release of JAMR performs better, hence we do
not compare against the former.



Smatch (Cai and Knight, 2013) 4, which compares
two AMRs using precision, recall and F1. Addi-
tionally, we also evaluate how good we are at pre-
dicting the concepts of the AMRs, by calculating
precision, recall and F1 against the gold-concepts
that are aligned to the induced spans during test
time.

4.2 Preprocessing

JAMR Aligner: The training data for AMR pars-
ing consists of sentences paired with correspond-
ing AMRs. To convert a raw sentence into a se-
quence of spans (as required by our algorithm),
we obtain alignments between words in the sen-
tence and concepts in the AMR using the auto-
matic aligner of JAMR. The alignments obtained
can be of three types (Examples refer to Figure 1):

• A single word aligned to a single concept:
E.g., word ‘read’ aligned to concept ‘read-
01’.
• Span of words aligned to a graph fragment:

E.g., span ‘Stories from Nature’ aligned to
the graph fragment rooted at ’name’. This
usually happens for named entities and multi-
word expressions such as those related to date
and time.
• A word aligned to NULL concept: Most func-

tion words like ‘about’, ‘a’, ‘the’, etc are not
aligned to any particular concept. These are
considered to be aligned to the NULL con-
cept.

Forced alignments: The JAMR aligner does
not align all concepts in a given AMR to a span
in the sentence. We use a heuristic to forcibly
align these leftover concepts and improve the qual-
ity of alignments. For every unaligned concept, we
count the number of times an unaligned word oc-
curs in the same sentence with the unaligned con-
cept across all training examples. We then align
every leftover concept in every sentence with the
unaligned word in the sentence with which it has
maximally coocurred.

Span identification: During training time, the
aligner takes in a sentence and its AMR graph and
splits each sentence into spans that can be aligned
to the concepts in the AMR. However, during test
time, we do not have access to the AMR graph.
Hence, given a test sentence, we need to split the

4http://amr.isi.edu/download/
smatch-v2.0.tar.gz

sentence into spans, on which we can predict con-
cepts. We consider each word as a single span ex-
cept for two cases. First, we detect possible multi-
word spans corresponding to named entities, using
a named entity recognizer (Lafferty et al., 2001).
Second, we use some basic regular expressions to
identify time and date expressions in sentences.

4.3 Experiments
To train our model, we use SEARN as implemented
in the Vowpal Wabbit machine learning library
(Langford et al., 2007; Daumé III et al., 2014).

For each dataset, we run three kinds of exper-
iments. They differ in how they get the concepts
during test time. All of them use the approach de-
scribed in Section 3.1 for predicting the relations.

• Oracle Concept - Use the true concept
aligned with each span.
• 1-Best Concept - Use the concept with which

the span was most aligned in the training
data.
• Fully automatic - Use the concepts predicted

using the approach described in Section 3.1.

4.4 Connectivity
Algorithm 1 does not place explicit constraints on
the structure of the AMR. Hence, the predicted
output can have disconnected components. Since
we want the predicted AMR to be connected, we
connect the disconnected components (if any) us-
ing the following heuristic. For each component,
we find its roots (i.e. concepts with no incom-
ing relations). We then connect the components
together by simply adding an edge from our pre-
dicted root croot to each of the component roots.
To decide what edge to use between our predicted
root croot and the root of a component, we get the
k-best list (as described in section 3.2) between
them and choose the most frequent edge from this
list.

4.5 Acyclicity
The post-processing step described in the previ-
ous section ensures that the predicted AMRs are
rooted, connected, graphs. However, an AMR, by
definition, is also acyclic. We do not model this
constraint explicitly within our learning frame-
work. Despite this, we observe that only a very
small number of AMRs predicted using our fully
automatic approach have cycles in them. Out of
the total 1,444 AMRs predicted in all test sets, less



Dataset Our Results JAMR Results
Oracle Concepts 1-Best Concepts Fully Automatic Fully Automatic
P R F1 P R F1 P R F1 P R F1

bolt 0.64 0.53 0.58 0.52 0.43 0.47 0.51 0.42 0.46 0.55 0.33 0.41
proxy 0.69 0.65 0.67 0.61 0.59 0.60 0.62 0.60 0.61 0.68 0.53 0.59
xinhua 0.68 0.60 0.64 0.55 0.49 0.52 0.56 0.50 0.52 0.59 0.40 0.48

dfa 0.62 0.47 0.54 0.48 0.37 0.42 0.48 0.40 0.44 0.52 0.15 0.23
lp 0.70 0.58 0.63 0.57 0.45 0.50 0.54 0.49 0.52 0.53 0.41 0.46

Table 5: Full Results

Dataset Our Results JAMR Results
1-Best Fully Automatic Fully Automatic

P R F1 P R F1 P R F1

bolt 0.74 0.72 0.73 0.74 0.72 0.73 0.73 0.55 0.63
proxy 0.79 0.77 0.78 0.78 0.78 0.78 0.78 0.68 0.73
xinhua 0.74 0.77 0.74 0.74 0.77 0.75 0.69 0.57 0.63

dfa 0.76 0.72 0.74 0.74 0.76 0.75 0.85 0.33 0.48
lp 0.77 0.79 0.78 0.77 0.80 0.79 0.53 0.41 0.46

Table 6: Concept Prediction Results

than 5% have cycles in them. Besides, almost all
cycles that are predicted consist of only two nodes,
i.e. both rij and rji have non-NO-EDGE values for
concepts ci and cj . To get an acyclic graph, we
can greedily select one of rij or rji, without any
loss in parser performance.

4.6 Results

Table 5 shows the result of running our parser
on all five datasets. By running our fully auto-
matic approach, we get an absolute improvement
of about 2% to 6% on most datasets as com-
pared to JAMR. Surprisingly, we observe a large
improvement of 21% on the online discussion fo-
rum dataset (dfa). In all cases, our results indi-
cate a more balanced output in terms of precision
and recall as compared to JAMR, with consistently
higher recall.

It should be noted that selecting the 1-best con-
cept also gives better results than JAMR. This in-
dicates that the 1-best baseline is strong, and pos-
sibly, not very easy to beat. To reinforce this, we
evaluate our concept predictions separately. The
results are shown in Table 6. First, observe that
going from the fully learned concept prediction
to the 1-best concept shows only a small (or in
some cases, no) drop in performance. Second,
note that we show a consistent absolute improve-
ment of 10% to 12% over the concept prediction

results of JAMR. As in the full prediction case,
we observe a large performance increase (27%)
on the online discussion forum dataset.

5 Related work

Semantic representations and techniques for pars-
ing them have a rich and varied history. AMR
itself is based on propositional logic and neo-
Davidsonian semantics (Davidson, 1967). AMR
is not intended to be an interlingua, but due
to the various assumptions made while creat-
ing an AMR (dropping tense, function words,
morphology, etc.), it does away with language-
specific idiosyncrasies and interlingual represen-
tations (Dorr, 1992) are thus, important predeces-
sors to AMR.

Like the task of AMR parsing, there have been
various attempts to parse sentences into a logi-
cal form, given raw sentences annotated with such
forms (Kate et al., 2005; Wong and Mooney,
2006). The work by Zettlemoyer and Collins
(Zettlemoyer and Collins, 2005) attempts to map
natural language sentences to a lambda-calculus
encoding of their semantics. They do so by treat-
ing the problem as a structured learning task,
and use a log-linear model to learn a Probabilis-
tic Combinatory Categorical Grammar (CCG)
(Steedman and Baldridge, 2011), which is a gram-



mar formalism based on lambda calculus.
AMR aims to combine various semantic annota-

tions to produce a unified annotation, but it mainly
builds on top of PropBank (Palmer et al., 2005).
PropBank has found extensive use in other seman-
tic tasks such as shallow semantic parsing (Giu-
glea and Moschitti, 2006),

In our work we used SEARN to build an AMR
parser. SEARN comes from a family of algo-
rithms called ”Learning to Search (L2S)” that
solves structured prediction problems by decom-
posing the structured output in terms of an explicit
search space and then learning a policy that can
take actions in this search space in the optimal
way. Incremental structured perceptron (Collins
and Roark, 2004; Huang et al., 2012), DAGGER

(Ross et al., 2011), AGGREVATE (Ross and Bag-
nell, 2014), etc. (Daumé III and Marcu, 2005;
Xu and Fern, 2007; Xu et al., 2007; Ratliff et
al., 2007; Syed and Schapire, 2010; Doppa et al.,
2012) are other algorithms that also belong to this
family.

6 Conclusion and Future work

We have presented a novel technique for pars-
ing english sentences into AMR using a learning
to search approach. We model the concept and
the relation learning in a unified framework using
SEARN which allows us to optimize over the loss
of the entire predicted output. We evaluate our
parser on multiple datasets from varied domains
and show that our parser performs better than the
state-of-the-art across all the datasets. We also
show that a simple technique of choosing the most
frequent concept gives us a baseline that is better
than the state-of-the-art for concept prediction.

Currently we ensure various properties of
AMR, such as connectedness and acyclicity using
heuristics. In the future, we plan to incorporate
these as constraints in our learning technique.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2013, 4-9

August 2013, Sofia, Bulgaria, Volume 2: Short Pa-
pers, pages 748–752.

Michael Collins and Brian Roark. 2004. Incremen-
tal parsing with the perceptron algorithm. In Pro-
ceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, page 111. Associa-
tion for Computational Linguistics.

Hal Daumé III and Daniel Marcu. 2005. Learning
as search optimization: Approximate large margin
methods for structured prediction. In Proceedings
of the 22nd international conference on Machine
learning, pages 169–176. ACM.

Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction. Machine
learning, 75(3):297–325.

Hal Daumé III, John Langford, and Stephane Ross.
2014. Efficient programmable learning to search.
arXiv preprint arXiv:1406.1837.

Donald Davidson. 1967. The logical form of action
sentences.

Janardhan Rao Doppa, Alan Fern, and Prasad Tade-
palli. 2012. Output space search for structured pre-
diction. arXiv preprint arXiv:1206.6460.

Bonnie J Dorr. 1992. The use of lexical semantics in
interlingual machine translation. Machine Transla-
tion, 7(3):135–193.

Jeffrey Flanigan, Sam Thomson, Jaime G. Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 1: Long Papers, pages 1426–
1436.

Ana-Maria Giuglea and Alessandro Moschitti. 2006.
Semantic role labeling via framenet, verbnet and
propbank. In ACL 2006, 21st International Con-
ference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, Sydney,
Australia, 17-21 July 2006.

He He, Hal Daumé III, and Jason Eisner. 2013. Dy-
namic feature selection for dependency parsing. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2013, 18-21 October 2013, Grand Hyatt Seattle,
Seattle, Washington, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1455–
1464.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
142–151. Association for Computational Linguis-
tics.



Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to transform natural to for-
mal languages. In Proceedings, The Twentieth Na-
tional Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial In-
telligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pages 1062–1068.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

John Langford, Lihong Li, and Alexander Strehl. 2007.
Vowpal wabbit online learning project.

Chao Ma, Janardhan Rao Doppa, J Walker Orr,
Prashanth Mannem, Xiaoli Fern, Tom Dietterich,
and Prasad Tadepalli. 2014. Prune-and-score:
Learning for greedy coreference resolution. In Pro-
ceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Nathan Ratliff, David Bradley, J Andrew Bagnell, and
Joel Chestnutt. 2007. Boosting structured pre-
diction for imitation learning. Robotics Institute,
page 54.

Stephane Ross and J Andrew Bagnell. 2014. Rein-
forcement and imitation learning via interactive no-
regret learning. arXiv preprint arXiv:1406.5979.

Stéphane Ross, Geoff J. Gordon, and J. Andrew Bag-
nell. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In
Proceedings of the Workshop on Artificial Intelli-
gence and Statistics (AIStats).

Karin Kipper Schuler. 2005. Verbnet: A broad-
coverage, comprehensive verb lexicon.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. Non-Transformational
Syntax Oxford: Blackwell, pages 181–224.

Umar Syed and Robert E Schapire. 2010. A reduc-
tion from apprenticeship learning to classification.
In Advances in Neural Information Processing Sys-
tems, pages 2253–2261.

Chuan Wang, Nianwen Xue, Sameer Pradhan, and
Sameer Pradhan. 2015. A transition-based algo-
rithm for amr parsing.

Yuk Wah Wong and Raymond J. Mooney. 2006.
Learning for semantic parsing with statistical ma-
chine translation. In Human Language Technology
Conference of the North American Chapter of the
Association of Computational Linguistics, Proceed-
ings, June 4-9, 2006, New York, New York, USA.

Yuehua Xu and Alan Fern. 2007. On learning lin-
ear ranking functions for beam search. In Proceed-
ings of the 24th international conference on Ma-
chine learning, pages 1047–1054. ACM.

Yuehua Xu, Alan Fern, and Sung Wook Yoon. 2007.
Discriminative learning of beam-search heuristics
for planning. In IJCAI, pages 2041–2046.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In UAI ’05, Proceedings of the 21st Con-
ference in Uncertainty in Artificial Intelligence, Ed-
inburgh, Scotland, July 26-29, 2005, pages 658–666.


