
Logic-Based Access Control Policy Specification
and Management

Vladimir Kolovski1

Department of Computer Science, University of Maryland, College Park, MD 20740,
USA

Abstract. Recently there has been a great amount of attention to access
control languages that can cover large, open, distributed and heteroge-
neous environments like the Web. These languages aim to be flexible and
extensible, with enough features to capture expressive and distributed se-
curity policies. However, with expressive languages such as XACML or
WS-Policy, users have problems understanding the overall effects and
consequences of their security policies. Even the task of checking that
the policy will not result in leakage of permissions to an unintended or
unauthorized principal is tedious and error-prone when done manually.
As a result, there has been a great amount of research on logic-based
policy management that provides analysis services to help find inconsis-
tencies/differences between access control policies. This paper provides
an overview of the existing approaches for security (access control) pol-
icy analysis. The survey covers both language proposals that have formal
semantics and provide algorithms for policy analysis out of the box, and
formalizations of already existing policy languages (WS-Policy, XACML,
XrML, ODRL) that provide a formal semantics and analysis services pre-
viously unavailable for the particular language.

1 Introduction

With the widespread use of Web services, systems on the Web are becoming
more connected and integrated. To protect the sensitive information that is
often contained in these systems, there is an increased need for adequate security
and privacy support. As a result, there has been a great amount of attention to
access control policy languages for web services which accommodate large, open,
distributed and heterogeneous environments like the Web. These languages aim
to be flexible and extensible, with enough features to capture expressive and
distributed security policies.

With these expressive policy languages, a significant problem is that users
have difficulty understanding the overall effects and consequences of their secu-
rity policies. Even arguably the most important feature in access control – check-
ing that the access control policy will not result in the leakage of permissions
to an unintended or unauthorized principal, i.e., safety - has become difficult, if
not impossible, to do manually. For example, incomplete security policies might
unintentionally give access to an intruder. How can a security administrator be



certain that her policy covers all possible corner cases? Even if the administrator
does discover a bug in the policy, and fixes it accordingly, the ramifications of
that fix (policy change) are difficult to analyze. It is possible that due to subtle
interactions of some other policy rules with the fix, the change opened other secu-
rity holes. Considering that most recent language proposals support distributed
policies, support for conflict resolution and distributed evaluation, verifying that
policies are safe has became an overwhelming task for security administrators. In
addition, the lack of formal semantics for most industry proposals in this space
has caused even more ambiguity over the particular meanings of policies written
in different languages.

To address the above concerns, there has been a great amount of research into
security policy analysis [38, 37, 2, 32, 16, 24, 52, 45, 16, 7]. In the research commu-
nity there have been a number of analysis services proposed - the most common
being verification of a policy against given safety properties. For example, as a
part of a company-wide access policy, one could state ’Junior developers should
never be allowed to sign expense reports’ or ’at any given time, a user cannot
be a member of more than two of the following three roles {JuniorDeveloper,
SeniorDeveloper, AccountsClerk } ’. Then, company security officers would use
automated tools to verify their policy against these constraints. In the event
bugs are discovered and the policy is changed, administrators would perform
change analysis to ensure no new bugs were unintentionally introduces, using
queries of the form ’Show me all requests involving Expense Reports that used
to map to Deny but now are mapping to Permit’. The above mentioned services
of verification and change analysis have been proposed as the building block of
a useful policy analyzer tool ([16]). In addition to the above two, there are many
other analysis services that have received some attention:

– Policy Redundancy - A policy P is called redundant if when removed from
the policy set, the behavior of the access control system does not change. In
other words, P either never applies or is always overridden by another policy
higher up in the hierarchy.

– Policy Incompatibility - If for two policies P1 and P2, there cannot be a
request s.t. both policies yield an access decision (both apply), then these
policies are incompatible.

– Policy Coherence - Check whether a policy P would ever return a Permit
(or Deny).

– Policy Repair - In the case when the policy does not satisfy the safety
property, compute the smallest set of constraints that need to be added in
order to fix it.

– Coverage Checking - Checks for a given description of a resource whether
an access request exists that will be not be evaluated to a Permit or Deny.

This paper will provide a survey of logic-based policy analysis approaches.
First, In Section 2 we provide a brief overview of logic-based policy specifica-
tion languages, with focus on Semantic Web based languages. In Section 3 we
provide a survey of logic based policy analysis approaches, which is the main



contribution of this paper. In Section 3 we discuss policy specification languages
with analysis support. In Section 3.1 we discuss approaches that map existing
policy languages to a formalism, which is then used to provide analysis services
for those languages. We provide some focus on XACML, since because of its
expressiveness it has attracted a great amount of attention from the security
analysis research community.

2 Logic-Based Access Control Policy Specification

In this section I will discuss policy language proposals that are based on logic.
These languages all benefit from having unambiguous semantics and well under-
stood computational properties. Most of them are based on Datalog, so evalu-
ating whether an access request satisfies the policy is done in PTIME. Some of
the proposals [27] even materialize the unique model of the underlying datalog
program, so there is no inference done at runtime.

One of the earliest attempts at a general, logic-based framework for express-
ing authorizations was made by Woo and Lam [51], who proposed the use of
default logic to model authorization and control rules. Default logic is a very ex-
pressive formalism, so Woo and Lam propose to use a fragment of the logic that
corresponds to stratified, extended logic programs, where the unique program
model can be computer in polynomial time. Using this formalism, they provide
a formalization of the Bell-LaPadula security model [12]. The authors do not
discuss any analysis services.

A similar approach is Delegation Logic [34], where the authorization logic
is limited such that tractable results are achieved. Delegation Logic combines
the following features: it is based on logic programs, expresses delegation depth
explicitly and supports a wide variety of complex principles (including but not
limited to k-out-of-n threshold). In addition, Delegation Logic provides a concept
of proof-of-compliance that is not entirely ad-hoc and is based on model-theoretic
semantics. Delegation Logic combines these features and can be extended with
non-monotonicity, negation and prioritized conflict handling. In their approach,
there is no attention paid to analysis and verification of policies.

PeerAccess [50] is a framework for reasoning about authorization in open dis-
tributed systems. It supports a declarative description of the behavior of peers
that selectively push and/or pull information from certain other peers. PeerAc-
cess local knowledge bases encode the basic knowledge of each peer, its policies
governing the release of each possible piece of information to other peers - in this
sense of information release it is similar to PeerTrust [18]. PeerAccess proofs of
authorization are verifiable and nonrepudiable, and their construction relies only
on the local information possessed by peers and their parameterized behavior
with respect to query answering, information push/pull, and information release
policies.

In addition to PeerAccess and Delegation Logic, there are other policy lan-
guages that support delegation: Abadi et al[1], SecPal [4], Binder [14], SD3[29]
,RT [36] and Cassandra [41]. All but Abadi et al. use Datalog as basis for syntax



and semantics. SecPal is a simple (semantics consists of three deduction rules)
yet very expressive language: it can express many common policy idioms using
constraints, controlled delegation, recursive predicates and negated queries. Cas-
sandra, RTC and SecPal are all based on stratified Datalog with constraints for
higher expressiveness. A limitation of all of these languages is that they do not
support classical negation.

Proof-carrying Authorization (PCA) and related distributed proof systems
[3] are an authorization framework based on a higher-order logic where different
domains in the system use different, less expressive, application-specific logics.
The higher-order logic (AF logic) used to check the proofs is undecidable, though
this problem is avoided by forcing clients to generate proofs on their own, using
only a decidable subset of AF logic. Consequently, the authorizing servers task
of proof-checking is reduced to a tractable type-checking problem - however this
leads to large rate of increase of sizes of the client proof.

Jajodia et al. [26] have proposed a logical language for specification of au-
thorizations that allows users to specify, together with the authorizations, the
policy according to which access control decisions are to be made. Policies are
expressed by means of rules which enforce derivation of authorizations, con-
flict resolution, access control, and integrity constraint checking. The Flexible
Authorization Framework (FAF) [28] they propose corresponds to a quadratic
time data complexity fragment of logic programming. This is accomplished by
stratifying the authorization predicates in FAF. Also, the authors propose a ma-
terialization technique that allows for incremental updates of the policy model
at run-time.

There is a body of work on dynamic policies, i.e., policies that change over
time. First we will discuss approaches that focus on changing subjects, resources
or authorizations, and then discuss approaches that have static policy bases, but
allow for temporally dependent authorizations.

The framework of Harrison, Ruzzo and Ullman [22] is one of the earliest
approaches that allows for changing number of subjects, roles, resources, and
authorizations. The HRU model is very expressive; it could model most of the
protection systems in use at that time when it was proposed. However, because
of the expressiveness, there is no algorithm to decide if a given subject can
eventually obtain an access privilege to a given object (it is undecidable).

Bertino et al [5] present a temporal extension of the RBAC model called
TRBAC. TRBAC supports periodic role enabling and disabling—possibly with
individual exceptions for particular users—and temporal dependencies among
such actions, expressed by means of role triggers. Role trigger actions may be
either immediately executed, or deferred by an explicitly specified amount of
time. Enabling and disabling actions may be given a priority, which is used to
solve conflicting actions. A formal semantics for the specification language is
provided, and a polynomial safeness check is introduced to reject ambiguous or
inconsistent specifications. They also present an implementation of TRBAC on
top of a conventional DBMS.



2.1 Semantic Web-Based Policy languages

Recently there has been a great amount of attention to how Semantic Web
technologies can be used in policy systems. In particular, there have been a
number of proposals that show how to ground or express policies in a Semantic
Web framework [49, 30, 31, 47].

Rei [30] is a policy specification language based on a combination of OWL-
Lite, logic-like variables and rules. It allows users to develop declarative policies
over domain specific ontologies in RDF and OWL. Rei allows policies to be
specified as constraints over allowable and obligated actions on resources in the
environment. A distinguishing feature of Rei is that it includes specifications for
speech acts for remote policy management and policy analysis specifications like
what-if analysis and use-case management.

The successor of Rei is Rein [31], which is a policy framework grounded in
semantic web technologies that allows for different policy languages and supports
heterogeneous policy systems. Rein provides an ontology for describing policy
domains in a decentralized manner and provides a reasoning engine built on top
of CWM , an N3 rules reasoner. Using Rein and CWM, the authors show how
it is possible to develop domain and policy language specific security systems.
Rein has been successfully used as a policy management system in the Policy
Aware Web project [49], which in turn provides an architecture for scalable,
discretionary, rule-based access control in open and distributed environments.

PeerTrust [18] also deals with discretionary access control on the web using
semantic web technologies. It provides a mechanism for gaining access to secure
information/services on the web by using semantic annotations, policies and
automated trust negotiation. In PeerTrust, trust is established incrementally
through an iterative process which involves gradually disclosing credentials and
requests for credentials. PeerTrusts policy language for expressing access control
policies is based on definite Horn clauses. A distingiushing feature of PeerTrust
is that it expects both parties to exchange credentials in order to trust each other
and assumes that policies are private, which is appropriate for critical resources
such as military applications and e-commerce sites.

Finally, KaOS Policy and Domain Services [47] use ontology concepts en-
coded in OWL to build policies. These policies constrain allowable actions per-
formed by actors which may be clients or agents. The KAoS Policy Service
distinguishes between authorizations and obligations. The applicability of the
policy is defined by a class of situations which definition can contain compo-
nents specifying required history, state and currently undertaken action.

All of the above proposals address the challenges that a policy language
should overcome to be usable in a massively open and distributed setting. Thus,
they mostly focus on architectural, privacy and scalability issues for web policies.
None of them discuss or propose any analysis services (except policy subsumption
in KaOS). Additionally, most of the above policy languages use quite expressive
logics so they can cover variegated use cases. It is an open question whether
analysis services can be provided in a scalable manner for such expressive lan-
guages.



3 Logic-Based Policy Analysis

There has been research on security analysis for access control [38, 37] that uses
the notions of states of policy systems and transitions (for example, adding
a role, or changing a permission) that alter those states. Then, usually a set of
queries is proposed that investigates the possible consequences of certain changes
in the policy. Simple safety checking is an example of a query; it checks if there
exists a reachable state in which a (presumably untrusted) principal has access
to a resource. Although early results show that this type of safety analysis can
easily lead to undecidability [22], there has been recent work that demonstrates
a class of access control models and queries for which safety is decidable and
efficient algorithms exist [38]. There are some limitations to the expressiveness
of the models that are analyzed: the states are described using positive Datalog
programs only.

Elisa Bertino et al [6] propose a formal framework for reasoning about dif-
ferent access control models. Their framework is logic-based and can capture
discretionary, mandatory, and role-based access control models. Each instance
of the proposed framework corresponds to a C-Datalog program, interpreted ac-
cording to the stable model semantics. To demonstrate the expressiveness, the
authors map the Bell and La Padula model [12] and NIST RBAC [44] to their
framework. The authors also propose some dimensions along which access control
models can be analyzed and compared. For example, they show that checking
for structural subsumption/equivalence between different access control models
is decidable, however access request equivalence is not.

Chomicki and Lobo [9] introduce a declarative policy description language
PDL, in which policies are described as sets of event-condition-action (ECA)
rules. They provide a framework for detecting and resolving conflicts between the
ECA rules and any action constraints. This is performed using a policy monitor,
which in order to resolve conflicts chooses or ignores certain events, essentially
preventing the ECA rule from activating and causing the conflict. The semantics
of the ECA rules, and conflict detection and resolution are defined using logic
programs. They also describe the architecture of a PDL-based policy server that
is used to provide centralized administration of a switch in a communication
network and show how it can be augmented to provide conflict resolution.

Dougherty et al. [15] present a model for formal analysis of access-control
policies in their dynamic environments. In particular, they propose a new math-
ematical model of policies, their environments, and the interactions between
them. Then the authors propose two core analysis services: a) goal reachabil-
ity, which checks if there is some accessible state in the dynamic access model
which satisfies some boolean expression over the policy facts and b) contextual
policy containment, which intuitively asks if one policy is more permissive than
another. These services are provided using a combination of relational reasoning
and temporal reasoning. A unique feature of their model is that it separates the
static policy from its dynamic environment. This separation allows for analysis
services such as semantic differencing that can be applied to the static policy
alone.



Lithium [20] is a language for reasoning about digital rights and is based on a
fragment of first order logic. It is different from Datalog-based approaches since
it allows real logical negation in the conclusion as well as in the premises of policy
rules. To show that the Lithium is expressive enough, the authors gather a large
collection of policies from different types of libraries and map them to their policy
language. They also show how large fragments of XrML [21] and ODRL [42] can
be translated in the language. They provide two types of analysis services:

– Given a set of policies ,a policy environment and an access request, does it
follow that the access request is permitted by the policy set?

– Consistency checking of a policy set. Unlike [26], the language does not
support conflict resolution mechanisms, so whenever both a permit and deny
is returned by a policy, it is treated as an error.

In order to remain decidable, Lithium restricts recursion and cannot easily ex-
press delegation.

Moving to state-based approaches, Schaad et al. [45] examine the problem of
verifying a policy that is subject to change coming from another policy. Using
the Alloy [25] specification language and its model-checking facilities, they show
how to specify an RBAC96-style model, ARBAC97-style extensions and a set of
separation of duty properties. The authors do not present any implementation
or evaluation results.

In [52] the authors present a model-checking algorithm which can be used to
evaluate access control policies, and a tool which implements it. The evaluation
includes not only assessing whether the policies give legitimate users enough
permissions to reach their goals, but also checking whether the policies pre-
vent intruders from reaching their malicious goals. Policies of the access control
system and goals of agents are described in the access control description and
specification language RW [19]. Their algorithm takes a policy description and
a goal as input and performs two modes of checking. In the assessing mode, the
algorithm searches for strategies consisting of reading and writing steps which
allow the agents to achieve their goals no matter what states the system may
be driven into during the execution of the strategies. In the intrusion detec-
tion mode, a weaker notion of strategy is used, reflecting the the willingness of
intruders to guess the value of attributes which they cannot read.

There are also proposals for analyzing policies based on description [53] or
modal logics [40]. Both of them provide a formalization of role based access con-
trol, and show how tableau-based decision methods can be used for consistency
checking of policies, evaluating access requests and verifying policies against se-
curity properties. Zhao et al [53] present a formalization of RBAC based on the
description logic ALCQ. They also show how RBAC policy constraints (sepa-
ration of duty, role hierarchies) can be captured with this logic. Massacci [40]
formalizes RBAC using multi modal logic and presents a decision method based
on analytic tableaux. Because he is using tableau-based algorithms, he is able
to provide services similar to ours: logical consequence, model generation and
consistency checking of policies.



In [2], the authors propose a set of services under the name of policy ratifica-
tion. In particular, they present algorithms for analysis tasks such as dominance,
coverage and consistency check that can be performed independently of policy
model and language and require little domain-specific knowledge. They present
algorithms from constraint, linear, and logic programming disciplines to help per-
form ratification tasks. They provide an algorithm to efficiently assign priorities
to the policies based on relative policy preferences indicated by policy admin-
istrators. Finally, they show how these algorithms have been integrated with a
working policy system to provide feedback to a policy administrator regarding
potential interactions of policies.

3.1 Applying Logic to Reason about Existing Languages

As mentioned in the previous section, the authors of Lithium have mapped
large fragments of ODRL [42] and XrML [21] to their FOL-based language. In
addition to giving ODRL formal semantics, the authors explored the practical
problem of determining whether a set of ODRL statements implies a permission
or prohibition. Using Lithium’s semantics, they showed the problem is NP-hard.
They also showed that by removing a component of ODRL whose meaning seems
to be somewhat unclear, a tractable fragment of the language results. They
prove that the fragment is tractable by creating a polynomial-time algorithm to
determine if a set of ODRL statements implies an access decision. They achieve
a similar result for XrML in [21]: propose a formal semantics, show that deciding
access requests in the language is NP-hard, then propose an expressive fragment
of the language for which deciding access requests is polynomial.

Kolovski et al. [33] present a formalization of the core WS-Policy model
using OWL-DL. Using the OWL mapping, they show how off-the-shelf OWL
reasoners can be used to act as policy processors. The authors a set of analy-
sis services (policy comparison, consistency checking, disjointness/compatilibity,
coherence) that go beyond what is usually offered. Additionally, the authors pro-
vide debugging support by leveraging research in explanation for inconsistencies
in OWL-DL KBs. In a more recent work [48], the authors extend the WS-Policy
coverage by coupling OWL with default logic constructs.

In [35] the authors present a first-order logic (FOL) semantics for SDSI [43].
Additionally they show how the FOL semantics can be easily extended to ad-
ditional policy concepts and gives meaning to a larger class of access control
and other policy analysis queries. The authors prove that the FOL semantics
is equivalent to the string rewriting semantics used by SDSI designers, for all
queries associated with the rewriting semantics. Using their semantics, they dis-
cover a few issues in the proof procedures for SPKI/SDSI defined in RDFC 2693
[8]. Finally, they compare SPKI/SDSI with RT1

C, a Datalog-based language
that is part of the RT policy framework.

Reasoning about XACML In this section I’ll discuss approaches that for-
malize and analyze fragments of XACML [24, 52, 45, 16, 46, 7, 10]. The semantics



of XACML is expressed in terms of the functional language Haskell. Since most
of the constructs have a declarative flavor, researchers have tried mapping them
to a logical semantics. In particular, this is true of conflict resolution and policy
combination methods, that are specified procedurally in the XACML specifica-
tion while could also be expressed declaratively.

Hughes et al. [24] propose a framework for automated verification of access
control policies based on relational First-Order Logic. They introduce a formal
model for systematically specifying access to resources, and show that the access
control policies in the XACML access control language can be translated to a
simple form which partitions the input domain to four classes: permit, deny,
error, and notapplicable. The authors show how to automatically verify policies
using an existing automated analysis tool, Alloy [25]. Because using the first-
order constructs of Alloy to model XACML policies is prohibitively expensive
(in terms of performance), the authors use only the propositional constructs.
However, it is unclear from their results whether it is feasible for larger policies.
In addition, the results of policy analysis are an internal Alloy representation
that can only be explored with Alloy’s visualization tools, and cannot be queried
or processed in more detail.

Bryans et al. [7] formalize XACML policies using a process algebra known
as Communicating Sequential Processes (CSP [23]). This allows them to use a
model checkers such as FDR for formally verifying properties of policies, and for
comparing access control policies with each other (policy subsumption and equiv-
alence). In addition, the authors show how limited workflows can be mapped to
CSP, too. The workflow is sequential in nature and in that sense their approach
is more expressive than first-order logic approaches.

In [16], the authors propose expressing XACML policies using Multi-Terminal
Binary Decision Diagrams (MTBDDs). MTBDDs [17] are a more general version
of Binary Decision Diagrams, that map bit vectors over a set of variables to a
finite set of results. In [16], variables in the decision diagram are used to rep-
resent attribute/value pairs (such as role=Student, action=View, etc.) and the
policy results (Deny, Permit, Indeterminate) are mapped to diagram terminals.
The paper presents Margrave, a tool for analyzing XACML policies. Margrave
provides verification and comprehensive change-impact analysis support based
on the semantic differences between the MTBDDs representing the policies.

In [11] the authors extend the work by Fisler et al. [16] by adding more
expressiveness to the language being analyzed and supporting additional analysis
services. Their tool, called EXAM (comprehensive framework for analysis of
access control policies), in addition to supporting core XACML defined in [16]
also supports datatype domains. One of the components in the framework is
a policy similarity analyzer [39] which is used to filter out policies with low
similarity score.

Finally, in [32] a description logic-based approach to analyzing XACML is
presented. The authors provide a formalization of XACML that explores the
space between propositional logic analysis tools (such as Margrave [16]) and full
First-Order logic XACML analysis tools (like Alloy [25]). As a basis for the



XACML formalization they use description logics (DL), which are a family of
languages that are decidable subsets of First-Order logic and are the basis for the
Web Ontology Language (OWL [13]). Because of the correspondence of policy
analysis services to DL reasoning services (e.g., policy inclusion can be reduced
to concept subsumption, whereas change impact analysis and verification can be
reduced to concept satisfiability), the framework can easily provide a variety of
policy analysis services and leverage the availability of off-the-shelf DL reasoners
optimized for these services. In addition to the analysis services, their framework
provides other benefits: a) the web nature of OWL (it uses URIs for naming and
allows for links between ontologies) is suitable for representing an access control
language for web resources and b) it supports ontology-based descriptions for
subjects,roles and resources used in the policy.

References

1. Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus
for access control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–734, September 1993.

2. Dakshi Agrawal, James Giles, Kang-Won Lee, and Jorge Lobo. Policy ratification.
In POLICY ’05: Proceedings of the Sixth IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’05), pages 223–232, Washington,
DC, USA, 2005. IEEE Computer Society.

3. Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-
control systems. In SP ’05: Proceedings of the 2005 IEEE Symposium on Security
and Privacy, pages 81–95, Washington, DC, USA, 2005. IEEE Computer Society.

4. Moritz Becker, Cedric Fournet, and Andrew Gordon. Design and semantics of a
decentralized authorization language. Computer Security Foundations Symposium,
2007. CSF ’07. 20th IEEE, pages 3–15, 6-8 July 2007.

5. Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal role-
based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, 2001.

6. Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical frame-
work for reasoning about access control models. ACM Trans. Inf. Syst. Secur.,
6(1):71–127, 2003.

7. Jery Bryans. Reasoning about xacml policies using csp. In SWS ’05: Proceedings
of the 2005 workshop on Secure web services, pages 28–35, New York, NY, USA,
2005. ACM Press.

8. C. Ellison and B. Frantz and B. Lampson and R. Rivest and B. Thomas and T.
Ylonen . RFC 2693 – SPKI Certificate Theory, 1999.

9. Jan Chomicki, Jorge Lobo, and Shamin Naqvi. A logic programming approach to
conflict resolution in policy management. In Anthony G. Cohn, Fausto Giunchiglia,
and Bart Selman, editors, KR2000: Principles of Knowledge Representation and
Reasoning, pages 121–132, San Francisco, 2000. Morgan Kaufmann.

10. Ernesto Damiani, Sabrina De Capitani di Vimercati, Cristiano Fugazza, and
Pierangela Samarati. Extending policy languages to the semantic web. In ICWE,
pages 330–343, 2004.

11. Dan Lin and Prathima Rao and Elisa Bertino and Jorge Lobo and Ninghui Li.
EXAM - a Comprehensive Environment for the Analysis of Access Control Policies,
2007.



12. David E. Bell and Leonard J. LaPadula. Secure Computer System: Unified Expo-
sition and MULTICS Interpretation. Technical Report MTR-2997, The MITRE
Corporation, 1976.

13. Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. Web
Ontology Language (OWL) Reference Version 1.0. W3C Working Draft 12 Novem-
ber 2002 http://www.w3.org/TR/2002/WD-owl-ref-20021112/.

14. John DeTreville. Binder, a logic-based security language. In SP ’02: Proceedings of
the 2002 IEEE Symposium on Security and Privacy, page 105, Washington, DC,
USA, 2002. IEEE Computer Society.

15. Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying and
reasoning about dynamic access-control policies. In 3rd International Joint Con-
ference on Automated Reasoning (IJCAR), 2006.

16. Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl
Tschantz. Verification and change-impact analysis of access-control policies. In
ICSE ’05: Proceedings of the 27th international conference on Software engineer-
ing, pages 196–205, 2005.

17. M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision dia-
grams: An efficient datastructure for matrix representation. Form. Methods Syst.
Des., 10(2-3):149–169, 1997.

18. Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent Seamons, and Marianne
Winslett. No registration needed: How to use declarative policies and negotiation
to access sensitive resources on the semantic web. In European Semantic Web
Symposium, May 2004.

19. Dimitar P. Guelev, Mark Ryan, and Pierre-Yves Schobbens. Model-checking access
control policies. In ISC, pages 219–230, 2004.

20. Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about
policies. In In Proceedings of the Computer Security Foundations Workshop
(CSFW’03), Los Alamitos, CA, USA, 2003. IEEE Computer Society.

21. Joseph Y. Halpern and Vicky Weissman. A formal foundation for xrml. In CSFW
’04: Proceedings of the 17th IEEE workshop on Computer Security Foundations,
page 251, Washington, DC, USA, 2004. IEEE Computer Society.

22. Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in op-
erating systems. Commun. ACM, 19(8):461–471, 1976.

23. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, 1978.

24. Graham Hughes and Tevfik Bultan. Automated verification of access control poli-
cies (technical report). Technical Report 2004-22, Department of Computer Sci-
ence, University of California, Santa Barbara, September 2004.

25. Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

26. Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian.
Flexible support for multiple access control policies. Database Systems, 26(2):214–
260, 2001.

27. Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Eliza Bertino. A
unified framework for enforcing multiple access control policies. In SIGMOD ’97:
Proceedings of the 1997 ACM SIGMOD international conference on Management
of data, pages 474–485, New York, NY, USA, 1997. ACM Press.

28. Sushil Jajodia and Duminda Wijesekera. A flexible authorization framework for
e-commerce. In ICDCIT, pages 336–345, 2004.



29. Trevor Jim. Sd3: A trust management system with certified evaluation. In SP
’01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, page 106,
Washington, DC, USA, 2001. IEEE Computer Society.

30. L. et al Kagal. A policy language for a pervasive computing environment. In IEEE
4th International Workshop on Policies for Distributed Systems and Networks,
June 2003.

31. Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel Weitzner. Using se-
mantic web technologies for policy management on the web. In 21st National
Conference on Artificial Intelligence (AAAI), 2006.

32. Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web access control
policies. In WWW ’07: Proceedings of the 16th international conference on World
Wide Web, pages 677–686, New York, NY, USA, 2007. ACM.

33. Vladimir Kolovski, Bijan Parsia, Yarden Katz, and James Hendler. Representing
Web Service Policies in OWL-DL. In Proc. of the Int. Semantic Web Conference
(ISWC), 2005.

34. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A
logic-based approach to distributed authorization. ACM Trans. Inf. Syst. Secur.,
6(1):128–171, 2003.

35. Ninghui Li and John Mitchel. Understanding spki/sdsi using first-order logic, 2003.
36. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-

based trust management framework. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

37. Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. ACM Transactions on Information Systems Security, 9(4):391–420, 2006.

38. Ninghui Li, William H. Winsborough, and John C. Mitchell. Beyond proof-of-
compliance: Safety and availability analysis in trust management. In IEEE Sym-
posium on Security and Privacy, May 2003.

39. Dan Lin, Prathima Rao, Elisa Bertino, and Jorge Lobo. An approach to evaluate
policy similarity. In SACMAT ’07: Proceedings of the 12th ACM symposium on
Access control models and technologies, pages 1–10, New York, NY, USA, 2007.
ACM.

40. Fabio Massacci. Reasoning about security: A logic and a decision method for role-
based access control. In First International Joint Conference on Qualitative and
Quantitative Practical Reasoning ECSQARU-FAPR, pages 421–435, 1997.

41. Moritz Becker and Peter Sewell. Cassandra: Distributed access control policies with
tunable expressiveness. In POLICY ’04: Proceedings of the Fifth IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY’04),
page 159, Washington, DC, USA, 2004. IEEE Computer Society.

42. Riccardo Pucella and Vicky Weissman. A Formal Foundation for ODRL. In In
Proceedings of the Workshop on Issues in the Theory of Security (WITS-04), 2006.

43. Ronald L. Rivest and Butler Lampson. SDSI – A simple distributed security
infrastructure. Presented at CRYPTO’96 Rumpsession, 1996.

44. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

45. Andreas Schaad and Jonathan D. Moffett. A lightweight approach to specification
and analysis of role-based access control extensions. In SACMAT ’02: Proceedings
of the seventh ACM symposium on Access control models and technologies, pages
13–22, New York, NY, USA, 2002. ACM Press.

46. Michael Carl Tschantz and Shriram Krishnamurthi. Towards reasonability prop-
erties for access-control policy languages. In SACMAT ’06: Proceedings of the



eleventh ACM symposium on Access control models and technologies, pages 160–
169, New York, NY, USA, 2006. ACM Press.

47. A. Uszokand and J. Bradshaw. Kaos policies for web services. In W3C Workshop
on Constraints and Capabilities for Web Servies, October 2004.

48. Vladimir Kolovski and Bijan Parsia. WS-Policy and Beyond: Application of OWL
Defaults to Web Service Policies. In In Proceedings of the 2nd International Se-
mantic Web Policy Workshop (SWPW’06), 2006.

49. Daniel J. Weitzner, Jim Hendler, Tim Berners-Lee, and Dan Connolly. Creating a
policy-aware web: Discretionary, rule-based access for the world wide web.

50. Marianne Winslett, Charles C. Zhang, and Piero A. Bonatti. Peeraccess: a logic
for distributed authorization. In CCS ’05: Proceedings of the 12th ACM conference
on Computer and communications security, pages 168–179, New York, NY, USA,
2005. ACM Press.

51. Thomas Y. C. Woo and Simon S. Lam. Authorizations in distributed systems: A
new approach. Journal of Computer Security, 2(2-3):107–136, 1993.

52. Nan Zhang, Mark D. Ryan, and Dimitar Guelev. Evaluating access control policies
through model checking. In Eighth Information Security Conference (ISC05), 2005.

53. Chen Zhao, NuerMaimaiti Heilili, Shengping Liu, and Zuoquan Lin. Representation
and reasoning on rbac: A description logic approach. In ICTAC, pages 381–393,
2005.


