
Find Most Probable Worlds of Probabilistic
Logic Programs: a Parallel Approach

Amy Sliva
Department of Computer Science

University of Maryland College Park
College Park, MD 20783, USA

asliva@cs.umd.edu

1 Introduction

Probabilistic logic programs (PLPs) [NS92] have been proposed as a paradigm
for probabilistic logical reasoning with no independence assumptions. PLPs used
a possible worlds model based on prior work by [Hai84], [FHM90], and [Nil86]
to induce a set of probability distributions on a space of possible worlds. Past
work on PLPs [NS91, NS92] focuses on the entailment problem of checking if a
PLP entails that the probability of a given formula lies in a given probability
interval.

However, we have recently been developing several applications for cultural
adversarial reasoning [SAM+07] where PLPs and their variants are used to build
a model of the behavior of certain socio-cultural-economic groups in different
parts of the world.1 Such PLPs contain rules that state things like “There is
a 50 to 70% probability that group g will take action(s) a when condition C
holds.” In such applications, the problem of interest is that of finding the most
probable action (or sets of actions) that the group being modeled might do.
This corresponds precisely to the problem of finding a “most probable world”
that is the focus of this paper.

In Section 2 of this paper, we recall the syntax and semantics of such pro-
grams [NS91, NS92]. We state the most probable world (MPW) problem by
immediately using the linear programming methods of [NS91, NS92] - these
methods are exponential because the linear programs are exponential in the
number of ground atoms in the language. Then, in Section ??, we discuss sev-
eral algorithms for solving the MPW problem, including several exact solutions,
as well as a heuristic method for obtaining approximate solutions.

While the algorithms given in [KMN+07] are able to reduce the computation
time necessary to solve for the MPW and can be applied to problems with (insert
number) atoms, we can achive even better results by utilizing the resources
provided by a computing cluster. Section 4 then, presents several explicitly
parallel algorithms for computing the most probable world.

Section 5 describes a prototype implementation of the parallelized ap-program
framework and includes a set of experiments to assess several of the algorithms.
We assess both the efficiency of our algorithms, as well as the accuracy of the
solutions they produce.

1Our group has thus far built models of the Afridi tribe in Pakistan, Hezbollah in the
Middle East, and the various stakeholders in the Afghan drug economy.

1



2 Action Probabilistic Logic Programs

Action probabilistic logic programs (ap-programs) are an immediate and obvious
variant of the probabilistic logic programs introduced in [NS91, NS92]. We
assume the existence of a logical alphabet that consists of a finite set Lcons of
constant symbols, a finite set Lpred of predicate symbols (each with an associated
arity) and an infinite set V of variable symbols. Function symbols are not allowed
in our language. Terms and atoms are defined in the usual way [Llo87]. We
assume that a subset Lact of LPred are designated as action symbols - these are
symbols that denote some action. Thus, an atom p(t1, . . . , tn), where p ∈ Lact,
is an action atom. Every (resp. action) atom is an (resp. action) wff. If F,G
are (resp. action) wffs, then (F ∧ G), (F ∨ G) and ¬G are all wffs (resp. action
wffs).

Definition 2.1 If F is a wff (resp. action wff) and µ = [α, β] ⊆ [0, 1], then F :
µ is called a p-annotated (resp. ap-annotated—short for “action probabilistic”
annotated) wff. µ is called the p-annotation (resp. ap-annotation) of F .

Without loss of generality, we assume that F is in conjunctive normal form (i.e.
it is written as a conjunction of disjunctions).

Definition 2.2 (ap-rules) If F is an action formula, A1, A2, ..., Am are action
atoms, B1, . . . , Bn are non-action atoms, and µ, µ1, ..., µm are ap-annotations,
then F : µ← A1 : µ1 ∧ A2 : µ2 ∧ ... ∧ Am : µm ∧ B1 ∧ . . . Bm is called an
ap-rule. If this rule is named c, then Head(c) denotes F : µ; Bodyact(c) denotes
A1 : µ1 ∧ A2 : µ2 ∧ ... ∧ Am : µm and Bodystate(c) denotes B1 ∧ . . . Bn.

Intuitively, the above ap-rule says that an unnamed entity (e.g. a group g, a
person p etc.) will take action F with probability in the range µ if B1, . . . , Bn are
true in the current state (we will define this term shortly) and if the unnamed
entity will take each action Ai with a probability in the interval µi for 1 ≤ i ≤ n.

Definition 2.3 (ap-program) An action probabilistic logic program (ap-program
for short) is a finite set of ap-rules.

Definition 2.4 (world/state) A world is any set of ground action atoms. A
state is any finite set of ground non-action atoms.

Note that both worlds and states are just ordinary Herbrand interpretations.
As such, it is clear what it means for a state to satisfy Bodystate.

Definition 2.5 Let Π be an ap-program and s a state. The reduction of Π
w.r.t. s, denoted by Πs is {F : µ← Bodyact | s satisfies Bodystate and F : µ←
Bodyact ∧ Bodystate is a ground instance of a rule in Π}.

Note that Πs never has any non-action atoms in it.
A fixpoint operator, TΠs

, is associated with an ap-program Π and a state s
and maps sets of ground ap-annotated wffs to sets of ground ap-annotated wffs
as follows.

2



Definition 2.6 Suppose X is a set of ground action atoms. We first define an
intermediate operator UΠs(X) as follows. UΠs(X) = {F : µ | F : µ ← A1 :
µ1 ∧ · · · ∧ Am : µm is a ground instance of a rule in Πs and for all 1 ≤ j ≤ m,
there is an Aj : ηj ∈ X such that ηj ⊆ µj}.

Intuitively, UΠs
(X) contains the heads of all rules in Πs whose bodies are deemed

to be “true” if the action wffs in X are true.
In order to assign a probability interval to each ground action atom,the same

procedure followed in [NS91] is used. We use UΠs(X) to set up a linear program
CONSU (Π, s,X) as follows. For each world wi, let pi be a variable denoting
the probability of wi being the “real world”. As each wi is just a Herbrand
interpretation, the notion of satisfaction of an action formula F by a world w,
denoted by w 7→ F , is defined in the usual way. The following constraints are
in CONSU (Π, s,X):

1. If F : [`, u] ∈ UΠs
(X), then ` ≤ Σwi 7→F pi ≤ u is in CONSU (Π, s,X).

2. Σwipi = 1 is in CONSU (Π, s,X).

We refer to these as constraints of type (1) and (2), respectively. Our oper-
ator TΠs(X) is then defined as follows.

Definition 2.7 Suppose Π is an ap-program, s is a state, and X is a set of
ground ap-wffs. Our operator TΠs(X) is then defined to be {F : [`(F ), u(F )] | (∃µ)F :
µ ∈ UΠs(X)} ∪ {A : [`(A), u(A)] | A is a ground action atom }.

Thus, TΠs(X) works in two phases. It first takes each formula F : µ that
occurs in UΠs(X) and finds F : [`(F ), u(F )] and puts this in the result. Once all
such F : [`(F ), u(F )]’s have been put in the result, it tries to infer the probability
bounds of all ground action atoms A from these F : [`(F ), u(F )]’s. The TΠs

(X)
operator has a least fixpoint, Tω

Πs
, which contains all of the ground action atoms

in X annotated with tight probability intervals.

3 Maximally Probable Worlds

[KMN+07] introduces the problem of finding the most probable world for an
ap-program. In this section we briefly summarize the problem and present a
naive algorithm for solving it.

Definition 3.1 (lower/upper probability of a world) Suppose Π is an ap-
program and s is a state. The lower probability, low(wi) of a world wi is defined
as: low(wi) = minimize pi subject to CONSU (Π, s, Tω

Πs
). The upper prob-

ability, up(wi) of world wi is defined as up(wi) = maximize pi subject to
CONSU (Π, s, Tω

Πs
).

Thus, the low probability of a world wi is the lowest probability that that
world can have in any solution to the linear program. Similarly, the upper

3



probability for the same world represents the highest probability that that world
can have. It is important to note that for any world w, we cannot exactly
determine a point probability for w. This observation is true even if all rules
in Π have a point probability in the head because our framework does not
make any simplifying assumptions (e.g. independence) about the probability
that certain things will happen. As given in [KMN+07] checking if the low (resp.
up) probability of a world exceeds a given bound is in the class EXPTIME.
The MPW Problem. The most probable world problem (MPW for short)
is the problem where, given an ap-program Π and a state s as input, we are
required to find a world wi where low(wi) is maximal.
A Naive Algorithm. A naive algorithm to find the most probable world
would be:

1. Compute Tω
Πs

; Best = NIL; Bestval = 0;

2. For each world wi,

(a) Compute low(wi) by minimizing pi subject to the set CONSU (Π, s, Tω
Πs

)
of constraints.

(b) If low(wi) > Bestval then set Best = wi and Bestval = low(wi);

3. If Best = NIL then return any world whatsoever, else return Best.

The Naive algorithm does a brute force search after computing Tω
Πs

. It finds
the low probability for each world and chooses the best one.

3.1 HOPAlgorithms

In [KMN+07], the authors present two algorithms that are more efficient than
the naive algorithm, but also still produce an exact solution.

3.2 Heuristic Approximation Algorithm

In [KMN+07], the authors also present a binary search style heuristic algorithm.
The goal of the heuristic approximation algorithm is to reduce the number of
variables in the linear program CONSU (Π, s, Tω

Πs
) for a SOMA-program Π, state

s, and set of ground action literals X.

4 Parallel Approximation Algorithms for Finding a Max-
imally Probable world

In the previous sections we have briefly examined several algorithms that can be
used to solve the maximally probable worlds problem. However, even with the
given simplifications and heuristic approximation algorithms, the computation
time and memory requirements do not always allow us to achieve the desired
level of performance. In this section we will present various parallel versions of
the the sequential algorithms presented earlier. Parallelism will not only reduce

4



Algorithm P −MPW (Π, s, Tω
Πs
,CONS,m, n){

1. remainingVars = divideVariables(CONS,m);
2. while remainingVars not empty {
3. for each node {
4. vj = pop(remainingVars);
5. for each variable pi in vj {
6. V AL(pi) = minimize pi subject to CONS;
7. MAXj = maxV AL(pi);
8. }
9. }
10. }
11. BestV al = maxMAXj;
12. wk = arg maxMAXj;
13. return wk;
}

Figure 1: The P-MPW Algorithm. This is the general parallel algorithm for
computing the most probable worlds. The variable remainingV ars is a stack
containing the j sets of variables of size m; divideV ariables is a procedure that
performs the division of CONS into these sets.

the computation time of the algorithms for finding the most probable worlds,
but will also allow us to examine a greater number of worlds, permitting analysis
of larger ap-programs, and possibly improving the accuracy of the end result.

4.1 Parallelism for Reducing Computation Time

All of our algorithms given above lend themselves to being parallelized in a
straightforward way. This new class of algorithms, the P-MPW (Parallel Maxi-
mally Probable World) algorithms, operate identically to the serial algorithms,
except that the computation of low(wi) or up(wi) for all of the worlds wi is
distributed among n nodes of a computing cluster such that m worlds at a time
are given to each node. Figure 1 contains the basic P-MPW algorithm in pseudo
code.

The number m of worlds for which to compute the low or up values can
be determined in several ways. The most obvious is to simply divide the prob-
lem evenly across all of the n nodes such that m =

|CONSU (Π,s,T ω
Πs

)|
n where

|CONSU (Π, s, Tω
Πs

)| is the number of variables in CONSU (Π, s, Tω
Πs

).
The CONS parameter of the P-MPW algorithm can be either CONSU (Π, s, Tω

Πs
),

RedCONSU (Π, s, Tω
Πs

), S RedCONSU (Π, s, Tω
Πs

), or the CONS′ returned by the
binary heuristic. The basic P-MPW and the PAMPW algorithms allow for, in
the best case, a computation time improvement of up to a factor of n, where n

5



Algorithm PAMPW −MS(Π, s, Tω
Πs
,m, n, ε, r,CONS){

1. for each node {
2. CONSnj

= Binary(Tω
Πs
, r, ε,CONS)

3. for each variable pi in CONSnj
{

4. V AL(pi) = minimize pi subject to CONSnj

5. MAXnj
= maxV AL(pi)

6. }
7. }
8. BestV al = maxMAXnj

9. wk = arg maxMAXnj

10. return wk

}

Figure 2: The PAMPW-MS Algorithm. This is a parallel algorithm for comput-
ing an approximation of the most probable world using the binary heuristic. On
each node, the binary heuristic algorithm is used to select a different reduced
set of constraints containing r variables. The most probable world is then that
with the maximum low probability across all of the nodes.

is the number of nodes in the cluster.

4.2 Parallelism for Improving Solution Accuracy of Heuristics

We can also utilize parallel algorithms to improve the quality of the final solu-
tions. In this section we will describe explicitly parallel algorithms that are able
to take into account additional samples of worlds for the heuristic approxima-
tions, propagating the most probable worlds from each sample throughout the
successive computations and allowing more thorough comparisons between the
most probable worlds found by each iteration of the parallel computation.

The first algorithm, PAMPW-MS (Parallel Appproximation of the Maxi-
mally Probable Worlds-Multi-Sample), allows us to examine a greater propor-
tion of the possible worlds in computing the most probable world. With this
method, each parallel computation investigates a distinct sample of possible
worlds for the binary heuristic constraint selection algorithm; the resulting most
probable worlds from each sample are then compared to find the most probable
world overall. Using the PAMPW-MS algorithm we are able to look at larger
samples of the possible worlds and thereby have a better chance of finding an
approximate solution that is more accurate with respect to the solutions re-
turned by the naive, HOP or SemiHOP algorithms. Figure 2 contains pseudo
code for the PAMPW-MS algorithm.

Using PAMPW-MS we can further generalize the functionality of the algo-
rithm to find the k most probable worlds from each node and compare these
sets of worlds to find the k worlds that are the most probable overall.

To further increase our ability to examine a larger sample of the possible

6



Algorithm iPAMPW −MS(Π, s, Tω
Πs
,m, n, ε, r, i, k,CONS){

1. for iteration=1 to iteration=i {
2. for each node {
3. prevWorldsnj ,i = ∅
4. CONSnj ,i = modConstraints(prevWorldsnj ,i, Binary(Tω

Πs
, r, ε,CONS))

5. for each variable pi in CONSnj ,i {
6. V AL(pi) = minimize pi subject to CONSnj ,i

7. MAXnj ,i = maxk V AL(pi)
8. prevWorldsnj ,i = k arg maxMAXnj ,i

9. }
10. }
11. }
12. BestV al = maxMAXnj ,i

13. w = arg maxMAXnj ,i

14. return w
}

Figure 3: The iPAMPW-MS Algorithm. This algorithm
solves multiple iterations of the PAMPW-MS, using the
modConstraints(prevWorlds,Binary(Tω

Πs
, r, ε,CONS)) function to per-

form the Binary heuristic, replacing k of the r constraints with the variables in
the set prevWorlds. The most probable world is then that with the maximum
low probability across all of the nodes and iterations.

worlds, we have also developed an iterative version of the PAMPW-MS algo-
rithm, called the iPAMPW-MS. In iPAMPW-MS, we first compute the k most
probable worlds on each node of the cluster as described in PAMPW-MS. Then,
we again generate a set of constraints for each node, propagating the k most
probable worlds from the first iteration into the second sample set. For exam-
ple, if our world selection method selects 1000 worlds and k is chosen to be 20,
then in the second iteration we only select 980 worlds and automatically include
the 20 most probable worlds from previous computation. Using this new set of
constraints, the k most probable worlds are again computed and propagated
into the next iteration. We continue this process until we have completed I
iterations of the algorithm, choosing the final k most probable worlds from the
last sets of k obtained across all processors. This iterative process allows us
to progressively refine the solution set of the k most probably worlds, improv-
ing the accuracy of the approximation heuristic algorithms. The steps in the
iPAMPW-MS algorithm are given in the pseudo code in Figure 3.

4.3 Parallelism for increasing computation capacity

Last, but not least, rather than simply distributing the MPW algorithms and
performing the same computation in a shorter amount of time, we can also

7



Figure 4: The literal-relationship graph GΠ for a simple ap-program Π.

design a “pleasantly parallel” algorithm for finding the most probable world of
larger ap-programs, i.e. programs with a larger number of ground atoms. To
accomplish this task, we must be able to distribute the set of constraints among
nodes in a cluster, rather than simply dividing the task of computing low or up
for each of the worlds wi.

An ap-program can be represented as a graph in which the vertices are literals
in the program and an edge indicates that its two endpoints occur together in
a ap-rule.

Definition 4.1 (Literal Relationship (LR) Graph) Let Π be an ap-program.
The literal relationship graph GΠ = (V,E) is an undirected graph defined as
follows.
V = {l | l is a literal (positive or negative) appearing in a rule in Π}.
E = {(li, lj) | li, lj ∈ V and li and lj are either complementary literals or they
both appear in a rule in Π}.
We use GΠ = (V,E) to denote the Literal Relationship Graph for the program
Π.

Consider the simple ap-program Π:
(a ∨ b) : [0.7, 1] ← .
((a ∧ b) ∨ (b ∧ c)) : [0.2, 0.6] ← .
(a) : [0.4, 0.4] ← .

Figure 4 shows the LR-graph associated with Π.
The rank of an LR-graph is the maximum cardinality of the connected com-

ponents of the graph.

Definition 4.2 (Rank of an LR-Graph) Let Π be an ap-program, and GΠ =
(V,E) be the LR-Graph for Π. We say that graph GΠ has rank k, if k is the
maximum cardinality of any connected component in GΠ.

For example, when the rank of the LR-graph GΠ is 1, this means that all
rules in Π are only literals, and there are no complementary literals. Note that
the graph in our example has rank 3. On the other hand, if we deleted the second
probabilistic statement from the program Π for Figure 4, we would have a graph
of rank 2. Note that we can compute the rank of an LR-graph in polynomial

8



Algorithm PAMPW − LR(Π, s, Tω
Πs
,m, n, ε, r,CONS){

1. G = buildLR(Π)
2. components = getComponents(G)
3. while components not empty {
4. for each node {
5. cj = pop(components)
6. CONScj = Binary(cj , s, r, ε,CONS)
7. for each variable pi in CONScj {
8. V AL(pi) = minimize pi subject to CONScj

9. MAXcj
= maxV AL(pi)

10. }
11. }
12. }
13. BestV al = maxMAXcj

14. wk = arg maxMAXcj

15. return wk

}

Figure 5: The PAMPW-LR Algorithm. This is a parallel algorithm for com-
puting an approximation of the most probable world. The variable components
is a stack containing the j connnected components in GΠ; getComponents is a
procedure that returns these connected components.

time (w.r.t. the size of the graph), and we can also compute the LR-graph itself
in polynomial time. As a consequence, checking if the LR-graph’s rank is below
some a priori set bound b is a polynomial-time operation.

Each connected component c in an LR-graph GΠ represents a subprogram Πc

of Π that utilizes only the literals in that component. Therefore, each connected
component comprises a separate set of linear constraints CONS(Πc, s, T

ω
Πs

),
RedCONSU (Πc, s, T

ω
Πs

), S RedCONSU (Πc, s, T
ω
Πs

), or CONS′. By finding the
maximally probable world in each component, we can compare these individ-
ual solutions and find the maximally probable world across all components of
the original set of constraints for Π. The PAMPW-LR algorithm uses this
methodology to divide a much larger ap-program into smaller pieces that can
be computed in parallel. On a cluster with n nodes, the PAMPW-LR algo-
rithm assigns a connected component of GΠ to each node and then computes
the most probable world of each component. The algorithm will then aggregate
the results and return the most probable world overall. While the PAMPW-LR
approach does not provide any time savings with regards to the computation
time, it does allow the analysis of much larger ap-programs that can be divided
into computationally feasible parallel components. Figure 5 contains pseudo
code for the PAMPW-LR algorithm.

9



Worlds Naive SemiHOP NaiveBinary HOPBinary SemiHOPBinary

32 50.48 02.73 111.21 94.40 76.64
64 66.15 40.88 123.72 97.78 80.26
128 83.23 47.97 121.58 97.10 78.06
256 89.47 52.01 86.80 13.61 44.73
512 90.29 55.84 89.95 29.15 9.68
1024 72.45 49.16 89.81 1.86 27.88
Avg 75.35 41.43 103.84 55.65 52.87

Table 1: Percent Speedup Achieved with P-MPW Algorithms

5 Implementation and Experiments

In [KMN+07] the authors implemented several of the serial algorithms men-
tioned in this paper—the naive, HOP, SemiHOP, and the binary heuristic algorithms—
using approximately 6,000 lines of Java code. In addtion to the basic MPW
algorithms, we also implemented the P-MPW algorithm and the PAMPW-MS
iterative algorithm, using about 6,700 lines of Java code; these implementations
will be described in more detail in this section. Experiments were performed
for P-MPW applied to the naive, HOP, SemiHOP and binary heuristic serial
algorithms. Our experiments were performed on a Linux computing cluster
comprised of 64 8-core, 8-processor nodes with between 10GB and 20GB of
RAM. The linear constraints were solved using the QSopt linear programming
solver library, and the logical formula manipulation code from the COBA belief
revision system and SAT4J satisfaction library were used in the implementation
of the HOP and SemiHOP algorithms.

For each experiment using P-MPW, we held the number of rules constant
at 10 and did the following: (i) we generated a new ap-program and sent it
to each of the three algorithms, (ii) varied the number of worlds from 32 to
16,384, performing at least 10 runs for each value and recording the average time
taken by each parallel algorithm relative to the serial experiments in [KMN+07]
and the other parallel running times, and (iii) we also measured the quality of
the SemiHOP and all algorithms that use the binary heuristic by calculating
the average distance from the solution found by the exact algorithm. In the
discussion below we use the metric ruledensity = Lact

card(T ω
Πs

) to represent the size
of the ap-program; this allows for the comparison of the naive and HOP and
SemiHOP algorithms as the number of worlds increases.

5.1 Parallel Implementations

Each experimental run utilized 16 processors in parallel on the above mentioned
computing cluster to solve a single MPW problem. As expected, the P-MPW
algorithms produce a marked speedup in the computation time for finding the
most probable world (Figure 6). Where the basic naive algorithm requires

10



almost 4 hours (13,636.23 seconds) for problems with 1,024 possible worlds,
the naive P-MPW algorithm completed the same computation in only about
an hour (4016.83 seconds). This is a very promising result for situations where
an exact solution is necessary. We see a similar speedup for the SemiHOP
and heuristic algorithms; the P-MPW SemiHOP algorithm uses slightly under
6 minutes (339.65 seconds) as opposed to 33.47 minutes (2,008.1 seconds) to
solve for 1,024 worlds, and the naive heuristic improves from 136.08 seconds
to 21.78 seconds. In some cases, however, the P-MPW version of the SemiHOP
algorithm actually performs worse as compared to the serial SemiHOP algorithm.
This anomoly occurs in those instances where there are no subpartitions with
only a single satisfying interpretation; in such cases, we do not actually need
to solve an MPW computation (as described in Section ??), so the overhead of
managing parallel threads is greater than the running time of the serial version.
In most instances, though, the P-MPW algorithm greatly improves the efficiency
of computing the most probable world. Table 1 contains the average speedup
achieved by using the P-MPW algorithms compared to their serial counterparts.
Similar improvements can be seen when using the P-MPW heuristic algorithms
on large numbers of worlds, providing an average speedup of about 66%. These
running times are shown in Figure 7.

6 Conclusions

The three algorithms and the Binary heuristic developed in [KMN+07] scalably
find the most probable world of an ap-program. In this paper, we have expanded
on the scalability and efficiency of the naive, HOP, and SemiHOPalgorithms by
creating several explicitly parallel versions of the algorithms. Through parallel
computing, we can improve the computation time and solution quality by uti-
lizing greater resources, and can calculate the most probable world for larger
ap-programs by distributing the workload. For this paper, we implemented the
basic P-MPW algorithm and demonstrated significant speed up from this pleas-
antly parallel approach as compared with the serial algorithms. As future work,
we plan to implement both the PAMPW-MS and PAMPW-LR algorithms to
test the effectivness of algorithms to increase solution quality and computational
capacity when approximating the most probable world.

11



Figure 6: Running time of the P-MPW versions of the naive, SemiHOP,
naivebin,HOPbin, and SemiHOPbin algorithms for an increasing number of
worlds.

Figure 7: Running time of the P-MPW versions of the naivebin and SemiHOPbin

algorithms for large numbers of worlds.

References

[FHM90] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic
for reasoning about probabilities. Information and Computation,

12



87(1/2):78–128, 1990.

[Hai84] T. Hailperin. Probability logic. Notre Dame Journal of Formal
Logic, 25 (3):198–212, 1984.

[KMN+07] Samir Khuller, Maria Vanina Martinez, Dana Nau, Gerardo Simari,
Amy Sliva, and VS Subrahmanian. Finding most probable worlds
of probabilistic logic programs. In International Conference on
Scalable Uncertainty Management (SUM 2007). Springer-Verlag (To
Appear), 2007.

[Llo87] J. W. Lloyd. Foundations of Logic Programming, Second Edition.
Springer-Verlag, 1987.

[Nil86] Nils Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87,
1986.

[NS91] Raymond T. Ng and V. S. Subrahmanian. A semantical framework
for supporting subjective and conditional probabilities in deductive
databases. In Koichi Furukawa, editor, Proceedings of the Eighth In-
ternational Conference on Logic Programming, pages 565–580. The
MIT Press, 1991.

[NS92] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic pro-
gramming. Information and Computation, 101(2):150–201, 1992.

[SAM+07] V.S. Subrahmanian, M. Albanese, V. Martinez, D. Reforgiato,
G. Simari, A. Sliva, O. Udrea, and J. Wilkenfeld. CARA: A Cul-
tural Reasoning Architecture. IEEE Intelligent Systems, 22(2):12–
16, 2007.

13


