
Auto-tuning Parallel Programs at Compiler- and Application-Levels

Ananta Tiwari

July 14, 2009

Abstract

Auto-tuning has recently received its fair share of attention from the High Performance

Computing community. Most auto-tuning approaches are specialized to work either on specific

domains - dense/sparse linear algebra, stencil computations etc.; or only at certain stages of

program execution - compile-time, launch-time or run-time. Real scientific applications, how-

ever, demand a cohesive environment that can efficiently provide auto-tuning solutions at all

stages of application development and deployment. Towards that end, in this paper, we de-

scribe a unified end-to-end approach to auto-tuning scientific applications. A unique feature

of our search-based auto-tuning system is a powerful parallel search algorithm, which leverages

parallelism to effectively navigate the search space defined by compiler-level and application-

level tunable parameters. Our system is general-purpose and the results presented in this paper

demonstrate its applicability in tuning compiler-generated and application-specific input param-

eter spaces.

1 Introduction

The complexity and diversity of today’s parallel architectures overly burdens application program-

mers in porting and tuning their code. At the very high end, processor utilization is notoriously low,

and the high cost of wasting these precious resources motivates application programmers to devote

significant time and energy to tuning their codes. This tuning process must be largely repeated to

move from one architecture to another, as too often, a code that performs well on one architecture

1

faces bottlenecks on another. As we are entering the era of petascale systems, the challenges facing

application programmers in obtaining acceptable performance on their codes will only grow.

To assist the application programmer in managing this complexity, much research in the last few

decades has been devoted to developing auto-tuning software that employs empirical techniques

to evaluate a set of alternative mappings of computation kernels to an architecture and select the

mapping that obtains the best performance. Auto-tuning software can be grouped into three cate-

gories: (1) compiler-based auto-tuners that automatically generate and search a set of alternative

implementations of a computation [3, 18, 7]; (2) application-level auto-tuners that automate em-

pirical search across a set of parameter values proposed by the application programmer [4, 13];

and, (3) run-time auto-tuners that automate on-the-fly adaptation of application-level and code-

transformation level parameters to react to the changing conditions of the system that executes

the application [1, 17]. What is common across all these different categories of auto-tuners is the

need to search a range of possible implementations to identify one that performs comparably to

the best-performing solution. The resulting search space of alternative implementations can be

prohibitively large. Therefore, a key challenge that faces auto-tuners, especially as we expand the

scope of their capabilities, involves scalable search among alternative implementations.

While it is important to keep advancing the start-of-art in auto-tuning software from the above

three categories, we argue that full applications demand and benefit from a cohesive environment

that can seamlessly combine these different kinds of auto-tuning techniques and that employs a

scalable search to manage the cost of the search process. Towards that end, we introduce parallel

Active Harmony, a search-based infrastructure that provides auto-tuning solution for all stages

of application development and deployment. We provide a high-level overview of the auto-tuning

framework in Section 2. We then present experimental results that show Active Harmony’s promise

in tuning compiler-level as well as application-level parameters.

2 Active Harmony

The design of the system was originally proposed by Hollingsworth et al [9] and since then mul-

tiple researchers [6, 5, 15] have advanced the state-of-art along several dimensions. The current

2

design uses the client-server model. The client is the “harmonized” application, which measures

some performance metric associated with the key computational elements of the application. The

measurements are consumed by the server, which bases its adaptation decisions on performance

data. “Harmonization” of an application involves making fairly small changes to the application

code to export tuning options to the server.

At the heart of the Harmony framework is its parameter tuning algorithm. In the past, this

algorithm has ranged from simple a greedy algorithm [9] to the Nelder-Mead Simplex algorithm [6].

Despite its popularity, the Nelder Mead algorithm has several weaknesses [12]. Consequently, to

handle constrained high-dimensional parameter spaces, a more sophisticated algorithm is needed.

To address this need, in our earlier work [16], we proposed a parallel search algorithm that can

effectively deal with high-dimensional search spaces with an unknown objective function. The

algorithm that we proposed, the Parallel Rank Ordering (PRO) Algorithm, belongs to a class

of direct search algorithms known as the Generating Set Search (GSS) methods. GSS methods

can effectively handle high-dimensional constrained spaces and have the necessary conditions for

convergence. These algorithms can leverage parallelism to speedup convergence [10].

For a function of N variables, PRO maintains a set of kN points forming the vertices of a simplex in

an N -dimensional space. Each simplex transformation step of the algorithm generates up to kN −1

new vertices by reflecting, expanding, or shrinking the simplex around the best vertex. After each

transformation step, the objective function value associated with each of the newly generated points

are calculated in parallel. The search stops when the simplex converges to a point in the search

space or after a pre-defined number of search steps. One of the unique features that distinguishes the

tuning framework presented in this paper from its earlier incarnations is a powerful parallel search

algorithm. The algorithm leverages parallel architectures to search across a set of optimization

parameter values. Multiple, sometimes unrelated, points in the search space are evaluated at each

timestep. With this approach, we both explore multiple parameter interactions at each iteration

and also have different nodes of the parallel system evaluate different configurations to converge

to a solution faster. Furthermore, the tuning system also empowers application programmers to

develop self-tuning applications that includes compile-time and run-time code transformations.

In the next two sections, we present the results of using our system to perform compile-time and

application level input parameter tuning. Each section first motivates the need the to perform

3

tuning at respective stages of application development and deployment.

3 Compiler-Based Tuning for Matrix Multiplication Kernel

Complex architecture features and deep memory hierarchies that characterize the state-of-art HPC

platforms require applying nontrivial optimization strategies on loop nests to achieve high perfor-

mance. Compounding these challenges is the fact that different loop optimizations usually have

different goals, and when combined they might have unexpected (and sometimes undesirable) ef-

fects on each other. Even optimizations with similar goals but targeting different resources, such as

unroll-and-jam plus scalar replacement targeting data reuse in registers, and loop tiling plus data

copy for reuse in caches, must be carefully combined. The unroll factors must be tuned so that reuse

in registers is exploited without causing register spilling or instruction cache misses. On the other

hand, tiling plus data copying for reuse in caches changes the iteration order and data layout, and

may affect reuse in registers. Given these complex interactions between the optimization strategies

and the lack of precise analytical models, we resort to empirical tuning technique. Such technique

involves performing a systematic search over a collection of automatically generated code-variants.

We use Matrix Multiplication kernel to demonstrate how Active Harmony can effectively nagivate

the search-space defined by loop optimization parameters.

The use of MM kernel for the experiments presented in this section was motivated by two goals.

First, the optimization of the MM kernel has been extensively studied in the past and as such, we

can easily compare the effectiveness of our approach to that of well-tuned MM libraries (e.g. Atlas).

And second, the MM kernel exhibits the complex parameter interactions that were discussed earlier.

Therefore, the results obtained for MM can be extrapolated to generic loop-nests beyond the realm

of linear algebra. CHiLL [2], a polyhedra-based framework, is used to generate code-variants.

CHiLL provides a high-level script interface that allows compilers and application programmers

to use a common interface to describe parameterized code transformations to be applied to a

computation. The optimization strategy for MM reflected in the CHiLL script in Table 1 exploits

the reuse of C(I,J) in registers, and the reuse of A(I,K) and B(K,J) in caches. Data copying is

applied to avoid conflict misses. The values for the five unbound parameters TI, TJ, TK, UI and UJ

are determined by Active Harmony, which uses the PRO algorithm to navigate this five-dimensional

4

naive CHiLL − Recipe Constraints

DO K = 1, N

DO J = 1, N

DO I = 1, N

C[I,J] = C[I,J]+A[I,K]*B[K,J]

permute([3,1,2])

tile(0,2,TJ)

tile(0,2,TI)

tile(0,5,TK)

datacopy(0,3,2,1)

datacopy(0,4,3)

unroll(0,4,UI)

unroll(0,5,UJ)

TK × TI ≤ 1
2

“

sizeL2

2

”

TK × TJ ≤ 1
2

“

sizeL1

2

”

UI × UJ ≤ sizeR

TI, TJ , TK

∈ [0, 2, 4, . . . , 512]
UI, UJ ∈ [1, 2, . . . , 16]

Table 1: Matrix Multiplication Optimization

search space.

The experiments were performed on a 64-node Linux cluster (henceforth referred to as umd-cluster).

Each node is equipped with dual Intel Xeon 2.66 GHz (SSE2) processors. L1- and L2-cache sizes

are 128 KB and 4096 KB respectively. To study the effect of simplex size, we considered four

alternative simplex sizes - 2N, 4N, 8N and 12N, where N(=5) is the number of unbound parameters.

Figure 1(a) shows the performance of the best point in the simplex across search steps. Search

conducted with 12N and 8N simplices clearly use fewer search steps than the search conducted with

smaller simplices. The existence of long stretches of consecutive search steps with minimal or no

performance improvement (marked by arrows in Figure 1(a)) in 2N and 4N cases show that more

search steps are required to get out of local minimas for smaller simplices. At the same time,

by effectively harnessing the underlying parallelism, 8N and 12N simplices evaluate more unique

parameter configurations (see Table 2) and get out of local minimas at a faster rate. Results

summarized in Table 2 also show that as the simplex size increases, the number of search steps

decreases, thereby confirming the effectiveness of the increased parallelism.

The next question regarding the effectiveness of Active Harmony relates to the quality of the search

result. Figure 1(b) shows the performance of the code variant produced by a 12N simplex across

a range of problem sizes along with the performance of native ifort compiler, Atlas’ search-only

and full version. In addition to a near exhaustive sampling of the search space, Atlas uses carefully

hand-tuned BLAS routines contributed by expert programmers. Therefore, to make a meaningful

comparison, we provide the performance of the search-only version of Atlas - code generated by the

Atlas Code Generator via pure empirical search. Our code version performs, on average, 2.36 times

faster than the native compiler. The performance is 1.66 times faster than the search-only version

of Atlas. Our code variant also performs within 20% of Atlas’ full version (with processor-specific

hand coded assembly).

5

0 10 20 30 40 50

1.4

1.6

1.8

2

2.2

Search Steps

S
p

e
e

d
u

p
 o

ve
r

th
e

 N
a

tiv
e

 C
o

m
p

ile
r

Effects of Simplex Size on the Convergence of the Search Algorithm

2N Simplex (10 Nodes)
4N Simplex (20 Nodes)
8N Simplex (40 Nodes)
12N Simplex (60 Nodes)

500 1000 1500 2000 2500 3000 35001

1.5

2

2.5

3

3.5

4

4.5

Matrix Size(N)

G
F

L
O

P
S

Matrix Multiplication Results

Ifort
ATLAS search−only
Harmony−CHiLL
ATLAS Full

(a) Effects of Different Degree of Parallelism on PRO (b) Results for MM Kernel

Figure 1: Performance of the Optimization Algorithm

Table 2: MM Results - Alternate Simplex Sizes
2N 4N 8N 12N

Number of Function Evals. 276 571 750 961
Number of Search Steps 49 32 22 18
Speedup over Native 2.30 2.33 2.32 2.33

4 Application-Level Tuning on High-Performance Linpack Bench-

mark

Scientific applications and libraries use tunable input parameters that users can select at run-

time to optimize the application’s performance. These input parameters are meant to control

several important aspects of the application performance such as data decomposition and alignment,

numerical algorithm selection, communication protocol selection, etc. Choosing appropriate values

for these parameters is essential in getting maximum application throughput. However, the task

of making a good selection of the input parameters is non-trivial because this requires a concrete

understanding of the interactions between the input parameters and the underlying algorithmic

behaviors that they are meant to control. Moreover, the input parameters also interact with the

elements of the target architecture. Under these conditions, it is practically impossible to manually

tune the parameters and optimize application performance; therefore automated parameter tuning

is the only plausible solution.

6

Parameter Domain

P×Q Depends on the number of processors
used (usually square grids are better)

N Up to 80 % of the available memory, step size: 256
NB 32-256: step size: 2
pfact left, right, crout
nbmin 2-10
ndiv 2-10
rfact left, right, crout

Table 3: Tunable Input Parameters for HPL

To demonstrate the applicability and the effectiveness of our system in tuning application-level input

parameters, we use the High-Performance Linpack (HPL) benchmark. Apart from demonstrating

the strength of our auto-tuning framework on input-parameter search, the experimental results

also establish the benefits of using our parallel search over Nelder-Mead simplex algorithm. Nelder-

Mead simplex algorithm was used as the underlying search algorithm in the previous versions of

Active Harmony.

HPL is a popular message-passing implementation of the Linpack benchmark. HPL solves an order

N dense system of linear equations of the form Ax=b using LU factorization. The matrix is divided

into NB × NB blocks, which are then dealt onto a P × Q processor grid a using block-cyclic data

distribution. HPL is built on top of the Basic Linear Algebra Subroutine (BLAS) package. We used

high-performance Goto BLAS [8] in our installation. The performance of the system is measured

in GFlops/second. This measurement is provided as a part of the program output. The goal is

to select a good matrix size N and blocking factor NB to maximize this metric. In addition,

HPL exposes 15 other input parameters that can be set at run-time to tailor the execution of

the code on different platforms. However, with very coarse-grained instructions on how to set

these parameters, users are left with no choice but to hand-tune the parameters. Thus, finding

a good input configuration is tedious and can take substantial time. We use Active Harmony’s

offline tuning mechanism to automate the search for input parameters. Once the parameter space

definition is exported to the Harmony server, no intermediate feedback is required to guide the

search process. With no default input configuration available, this experiment provides a strict

comparison between PRO and Nelder Mead algorithms.

We took note of previous research that studied the application behavior of HPL [14, 11]. These

results suggested that not all HPL parameters have noticeable impact on performance. Of course,

parameters that do not affect performance in one system might have significant impact on another.

7

0 5 10 15 20 25 30 35 40
45

50

55

60

65

70

75

Search Iterations

%
Pe

ak

Performance plot: PRO vs. Nelder−Mead Algorithm for HPL

PRO
Nelder−Mead

Figure 2: Comparison of best performing points of PRO and Nelder-Mead Algorithm

We conducted a parameter study to determine what parameters had significant impact on perfor-

mance on our cluster. We vary only one parameter at a time to try and measure its importance.

After trying all the applicable options for a given parameter (when the other parameters are fixed),

if the HPL performance remains roughly within the noise (3% differential) for all options, we remove

the parameter from our search space. After the study, we short-listed the parameters that have a

noticeable impact on HPL performance on our system. This parameter list along with their domain

values is provided in Table 4. pfact (and rfact) specifies panel (recursive) factorization method.

nbmin specifies the number of sub-panels and ndiv specifies the number of columns in the recursive

base case. The matrix size N should not exceed the amount of memory available across the nodes

in the cluster. HPL guidelines suggest using 80% of available memory for the matrix to get the

maximum performance leaving 20% for the Operating System and other background activities.

The experiment was conducted for 8 Nodes (16 CPUs). The performance metric (objective function)

is Rmax, which is the maximum measured HPL performance in GFlops/second. To calculate the

efficiency of the system, we divide Rmax by the theoretical peak performance, Rpeak, for the system.

Rpeak is calculated by multiplying the total number of processors, the processor clock frequency and

the theoretical number of 64-bit floating-point operations per clock. Figure 2 shows the iteration

history of both PRO and Nelder Mead algorithms. PRO input configurations reached 69.3% of

Rpeak after 11 iterations and the algorithm evaluated 96 unique candidate configurations in the

8

process. Meanwhile Nelder-Mead configurations could not get more than 65.9% of Rpeak for the

first 33 iterations. The performance slightly improved to 67.4% after 33 iterations. In conclusion,

PRO finds a better input configuration 3 times faster than Nelder-Mead simplex algorithm.

5 Conclusion and Future Work

In this paper, we described a general-purpose tuning framework for scientific applications. The

search-based tuning system is empowered with a parallel parameter tuning algorithm, which can

take advantage of the available parallelism inherent in today’s High Performance Computing sys-

tems. We showed that our tuning algorithm can effectively deal with high-dimensional search

spaces. The fact that the search algorithm converges to solutions in only a few tens of search-steps

while simultaneously tuning multiple parameters demonstrates its capability of taking into account

the latent interactions between tunable parameters.

Going forward, our work will focus on making run-time tuning of parallel programs a practical

goal. The goal is to design an infrastructure that will provide tuning options not only for sym-

bolic parameters but also for parameters that require dynamic code-generation and compilation.

Conceptually, this can be viewed as a merger of the traditional and just-in-time compilation.

References

[1] C. Cascaval, E. Duesterwald, P. Sweeney, and R. W. Wisniewski. Multiple page size modeling and

optimization. Parallel Architectures and Compilation Techniques, 2005. PACT 2005. 14th International

Conference on, pages 339–349, 17-21 Sept. 2005.

[2] C. Chen. Model-Guided Empirical Optimization for Memory Hierarchy. PhD thesis, University of

Southern California, 2007.

[3] C. Chen, J. Chame, and M. W. Hall. Combining models and guided empirical search to optimize

for multiple levels of the memory hierarchy. In Proceedings of the International Symposium on Code

Generation and Optimization, Mar. 2005.

[4] I.-H. Chung and J. K. Hollingsworth. Using Information from Prior Runs to Improve Automated Tuning

Systems. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, page 30,

Washington, DC, USA, 2004. IEEE Computer Society.

9

[5] I.-H. Chung and J. K. Hollingsworth. A Case Study Using Automatic Performance Tuning for Large-

Scale Scientific Programs. In High Performance Distributed Computing, 2006 15th IEEE International

Symposium on High Performance Distributed Computing, pages 45–56, 2006.

[6] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth. Active harmony: towards automated performance

tuning. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing,

pages 1–11, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[7] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam. Semi-automatic

composition of loop transformations for deep parallelism and memory hierarchies. International Journal

of Parallel Programming, 34(3):261–317, June 2006.

[8] Goto-Webpage. http://www.tacc.utexas.edu/resources/software. [last accessed: October 5,

2007].

[9] J. Hollingsworth and P. Keleher. Prediction and adaptation in Active Harmony. pages 180–188, Jul

1998.

[10] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by Direct Search: New Perspectives on Some

Classical and Modern Methods. SIAM Review, 45(3):385–482, 2004.

[11] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A. McKee. Methods of inference

and learning for performance modeling of parallel applications. In PPoPP ’07: Proceedings of the 12th

ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 249–258, New

York, NY, USA, 2007. ACM.

[12] K. I. M. McKinnon. Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point. SIAM

J. on Optimization, 9(1):148–158, 1998.

[13] Y. Nelson, B. Bansal, M. Hall, A. Nakano, and K. Lerman. Model-guided performance tuning of param-

eter values: A case study with molecular dynamics visualization. Parallel and Distributed Processing,

2008. IPDPS 2008. IEEE International Symposium on, pages 1–8, April 2008.

[14] K. Singh, E. İpek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caruana. Predicting parallel

application performance via machine learning approaches. Concurrency And Computation: Practice

and Experience, 19(17):2219–2235, 2007.

[15] V. Tabatabaee and J. K. Hollingsworth. Automatic software interference detection in parallel applica-

tions. In SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages 1–12, New

York, NY, USA, 2007. ACM.

[16] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Parallel Parameter Tuning for Applications with

Performance Variability. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing,

page 57, Washington, DC, USA, 2005. IEEE Computer Society.

[17] M. Voss and R. Eigenmann. ADAPT: Automated De-coupled Adaptive Program Transformation.

Parallel Processing, 2000. Proceedings. 2000 International Conference on, pages 163–170, 2000.

10

[18] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill. Is Search Really

Necessary to Generate High-Performance BLAS? Proceedings of the IEEE: Special Issue on Program

Generation, Optimization, and Platform Adaptation, 93(2):358–386, Feb. 2005.

11

